

Example 2

Find the general antiderivative of each given function.

$$
\begin{aligned}
& f(x)=x \\
& f(x)=x^{2} \\
& f(x)=x^{3} \\
& f(x)=x^{n}
\end{aligned}
$$

Example 2
Find the general antiderivative of each given
function.
$f(x)=x$
$f(x)=x^{2}$
$f(x)=x^{3}$
$f(x)=x^{n}$

Antiderivatives

A function F is called an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

General Antiderivatives

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

The Power Rule

If $f(x)=x^{n}$ where $n \neq-1$, then the general antiderivative of $f(x)$ is

$$
F(x)=\frac{x^{n+1}}{n+1}+C
$$

Example 5

Find $f(x)$ given $f^{\prime}(x)=8 x^{3}-4 x^{2}+7$, $f(0)=12$.

Indefinite Integrals

If $F(x)$ is any antiderivative of $f(x)$, then the indefinite integral of $f(x)$ with respect to x is

$$
\int f(x) d x=F(x)+C
$$

where C is an arbitrary constant.

In other words, calculating the indefinite integral of a function is the same as calculating the general antiderivative of the function.

Example 6

Compute each indefinite integral.

$$
\begin{aligned}
& \int \frac{12 x^{8}-x^{1 / 2}}{x^{3}} d x \\
& \int y(y-1)^{2} d y \\
& \int\left(1+\cot ^{2} \theta\right) d \theta
\end{aligned}
$$

Example 7

Find $f(x)$ given $f^{\prime \prime}(x)=2 x^{3}+3 x^{2}-4 x+5$, $f(0)=2$, and $f(1)=0$.

