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" See Web Appendix G for a review: of
cirdles.

t.1 Funcfions 5

which is impossible, since 7 cannor
function f whose graph is the given

assign two different values to o Thus, there is no
curve, This ilusirates the following general rasals,

" which we will call the vertical Hne fest.

b

. LL3 veE vERTICAL Live resr. A curve in the xy-plane is the graph of some
- function § if and only if no vertical line intersects the curve more than vnce.

b Example 3 The graph of the equation

x4yl =25

g (1
i i

is a circle of rading 5 centered at the origin and hence there are vertical lines that cut the

graph more than once. This can also be seen algebraically by solving Equation (L foryin

terms of x: r——

Y =y/25 — x2
This equation does not define ¥ as a fupction of x because the right side is “multiple valued”
in the sense that values of r in the interval {~3, 5} preduce two corresponding values of
¥. For example, if x = 4, then ¥ =3, and hence (4, 3) and (4. — 3} are two points on the
circle that lie on the same vertical Hae {Figure 1.1.8}. However, we can regard the cirele as
the union of the two semicircles
V25 -1t and vy —/35 - 2

each of which defines v as a function of x

Y o=

{Figure 1.1.9). <

b o it It
{—.E/’ é)) 7®% "‘) i ;ff E \‘\‘% H ‘ .I" x
T bawt (allon (DL M S e
. o x i \E
Cpad - S~
P -6+ -6+

Symbois such as +x- and. —x- are- de-
ceptive, since itis lempting to condlude
that'+x-is positive and —x is negative,
However, this need'not beso; since x
itself can be- positive: or negative: For
-examnple, if xis negative; say = —3,
“ther —x:= 35 pasitiveand +x = -3
5 negative. -

Figure LI The union of these semicircles is the full circls.

X THE ABSOLUTE VALUE FUNCTION

Recall that the absolute value or magnitude of 2 real number x is defined by

] = X, x=0
-, 1«0

The effect of taking the absolute value of 4 number is to strip away the minus sign if the
number is negative and to leave the number unchanged if it is nonnegative. Thug,

Bl=35|-4=4 io=0

i

A more detailed discussion of the properties of absolute value is given in Web Appendix
E. Howaver, for convenience we provide the following summary of its algebraic properties.
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Far each input x, the corresponding output y is obrained by substituting x in this formul
For exampie,
O =307 ~ 4D +2 =2

f(m] 7) = 3(~ 57)2 - 4(-—‘1 7) +2=1747 :f associates y = 37,47_ with x = m";‘

sociares 5= 2 mlix X E]

f(\\/—z_) = 3(-\/”2“ )2 - 4——\/_2 -+ 2= B 4'\/—2‘ .lf issociates }'zé—é\fﬁ with x == /3. 4

CRAPHS OF FUNCTIONS

If £ is arcal-vatued function of 2 real variable, then the graph of § inthe xy-plane is defin
1o be the graph of the eguation y = f{x}. For example, the graph of the function f{x} =
ts the graph of the eguation y = x, shown in Figure 1.1.4. That figure also shows the grap
of some other basic funciions that may aiready be familiar 1o you. In the next section
will discuss technigues for graphing functions ssing graphing techrology.

Since /% is imaginary for negative val-

ues of x, there are no points om.the

graph of y = +/% ir the region where
x = O

Figure LLA  The y-coordinate of
point on the graph of ¥ = f{x) s the
value of 7 at the \,mrt,spcmdmg
x-coppiinge.

Figure 1.1.4

Graphs can provide valuable visual information about a function. For example, §
the graph of & function £ in the xy-plane is the graph of the equation y = f(x), the po
on the graph of f are of the form (x, f(x)); that is, the y-coordinate of a point on the gr
of f is the value of [ at the corresponding x-coordinate (Figore 1.1.5). The values
for which f{x) = 0 are the x-coordinates of the points where the graph of f intersects
x-axis (Figure 1.1.6). These values are calk:d the zeres of f, the reats of flx) =0, a1
x-intercepts of ¥y = f{x}.

THE YVERTICAL LINE TESY

Not every carve in the xy-plane is the graph of a function. For example, consider the Ci
in Figure 1.1.7, which is cut at two distinet points, (z. b} ané (e, ¢). by a ve eriical lins.
CUrvVE Cannot bc the graph of v = f{x) for any function J; otherwise, we would have

fley=0b and fle)=r<¢
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Figure 1.1.30

TECHNOLOGY BAASTERY

verify (2) by using a graphing utility to
show that the equations ¥ = +/ &+ and
y = lx| heve the same graph.

B

¥ W
R
[ e
! "/
L o
Y \'\
{3 L
i ;

T

Figure 1.1L1)

2

1.1.4 PROPERTIES OF ABSOLUTE VALUE. Ifa and b are real numbers, then
@ |-al = lal
(by |ab] = |}l i Tie abgolets valie of @ product is the product of the absoiule vaiues.

(@) lalbl = el bl b £ 0

A numnber and Hs aegative have the same sbsolute vatuz,

The absoluts valhe of 4 o 18 the miio of ihe absoiue values.

H

The trigngie imequatity

(@) ja bl lal+ ]

The graph of the function f(x) = ixj can be obtained by graphing the two parts of the
equallon x. x20
}? =
¢ <

-y, x <

separaiely, Forx > O, the graphof » = x is a ray of slope 1 with its endpoint at the origin,
and for ¥ < 0, the graph of y = —x is aray of slope -1 with its endpoint at the origin,
Contbining the two parts produces the V-shaped graph in Figure 1.1.10,

Absolute values have important relationships to square roets. To see why this is s¢, recall
from algebra that every positive real number x has two sguare To0ls, one positive and one
negative. By definition, the symbol /% denotes the positive square root of x. 70 denote
the negative square To0T yOu Inust write — /%. Far example, the positive square 700t ofGis
8 = 3, and the negative sguare root is —2/0 = —3. {Denot make the mistake of writing
NCESEXN

Care must be exercised in simplifying expressions of the form /%7, since it is not always
true that +/2 = x. This equation is correct If x is nonpegatjve, but it is false for negative x.
For example, if x = —4, then

V= A =T =4

A statement that is correct for all real values of x is

i
[

/x7 = ]

B FUNCTIONS DEFINED PIECEWISE

The absolute value functon F(x} = x| is an example of afunction that is defined piecewis
in the sense that the formula for £ changes, depending on the value of x.

b Exampie 4 Sketch the graph of the function defined piecewise by the formula

0, Xl
Jy=1441-x% ~lwx<]
A _ x, =1
Solusion. The formula for f changes at the points x = —1 and x = 1, [We call these i

Breakpoints for the formula.) A good procedure for graphing functions defined plecewl:
is 1o graph the Tunction separately over the open intervais determined by the breakpoint
and then graph f ai the breakpoints themseives. For the function § in this e:xam‘g%gﬁ
graph is the horizontal ray y = Donthe interval (—oe, —13, itis the semicircle ¥ = V1
on the interval {—1, 1}, and it is the ray y = x on the interval €1, -oo). The formula fof
specifies that the eguation y = () applies at the breakpoint —1 {so y = f(—1) = 03, and
specifies that the equation y = x applies &l the breakpoint 1 [so y = f(1) = 1]. The g%
of f is shown in Figure 1.1.31. =
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’ The domain and range of a function f can be pictured by projecting the graph of v == f(x)
S— onto the coordinate axes as shown in Figore 1.1.13.
o i ¥ :f(xif‘i
£ o/ e
= ""r"*"‘—‘}’ WA » Exampie & Find the natural domain of
| 3 (@ fo =2 ) F0 =Vl = D - 3)
Cemain (&} Fflx)=tanx {d) ) = A/x? = 5x 26
Figure 1.1.13  The projection of
¥ == flx) on the x-wxis is the set of Solution {g).  The function f has real values for ail real x, so its natural domain s the

allowible x-values for £, and the

interval (—oo, oo},

projection on the v-axis is the set of

corresponding y-values.

Solution (). The function f has real vafues for all real x, except x = I and x = 3,
where divisions by zero occur. Thus, the natural domatn 1s

Cdxctx#Flandx # 3 = (o, YU, UG, 4o

Solution {¢). Since f{x) = tanx = sin x/ cosx, the function f has rea) values except
where cos x = (), and this occurs when x is an odd integer multiple of #/2. Thus, the natural

For & i'ez;iew,af friganornetry see Ap-

pendixA.

dornain consists of all real numbers except

T 3 Sm
X =i s, e, L
2 z 2
. Sofution (). The function f has real values, except when the expression inside the
yE=x radical is negative. Thus the natural domain consists of ali real numbers x such that
/ S 46={(x—3(x—-21=0
ff This inequality is satisfied if x = 2 orx = 3 (verily), so the natwral domain of f is
/ P ' (—, 2JU[3, 4} @
in some cases we will include the domain explicitly when defining a functon. For
> 50 example, if f{x) = x* is the area of a square of side x, then we can write
M a A
fsf fxy=x%, x=0
/ o indicate that we take the domain of f t0 be the set of nonnegative real numbers (Fig-
/ £
F; are 1.1.14).

Tigure 1.1.14

B OTME EPRECT OF MUGEBRAIS OPERATIONS O THE DORAIN _
Algebrale expressions ave frequently simplified by canceling commos factors in the -
merator and denominator. However, care must be exercised when simplifying formulas for
functions in this way, since this process can alter the domain. '

e Exampie 7 The natural domain of the fanction

x* —4
x -2 .
consists of alf real x except x = 2. However, if we factor the numerator and then cancel =

the common factor in the numerator and denominator, we obtain

Jlx} = G- A1 2 =
x -2

flaoy = 3

x+2
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1.1 Functions 9

Since the right side of {4) has a value of f(2) = 4, whereas f(2) was undefined in (3), the
algebraic simplification has changed the function. Geometrically; the graph of (4) is the
line in Figure 1.1.15¢, whereas the graph of (3} is the same line but with 2 hole at x = 2,
since the function is undefined there (Figure 1.1.13b), In short, the geometric effect of the
algebraic cancellation is to eliminate the hole in the original graph. -4

Sometimes alterations to the dormain of a function that result from algebraice simplification
ave irrelevant to the problem at hand and can be ignored. However, if the domain must be
preserved, then one must impose the restrictions on the simplified function explicitly. For
example, if we wanted 1o preserve the domain of the function in Example 7, then we would
have to express the simpiified form of the funciion as

Sflad=x+2, x#2

» Example 8 PFind the domain and range of

@ f)=2+Vx-1 (0 fE=&+D/(x-1)

Sodution (2}, Since no domain is stated explicitly, the domain of f s the natural domain
[1, 4+). As x varies over the interval {1, 4-c0), the value of 4/x — I varies over the interval
[0, +), s0 the value of f{x) = 23 Vx ~ 1 varies aver the interval [2, <), which is
the range of /. The domain and range are highlighted in green on the x- and y-axes in
Figure 1.1.16.

Sofution (B). The given function f is defined forall ept x = I, 50 the narural

domainof f is o x 1) W( oo, 1Y UL, -e0) M WW

To determine the range it will be convenient to introduce a dependent vaniable

x4l

R —
i x—1

(3

Although the set of possible y-values is not immediately evident from this equation, the
grash of (5), which is shown in Figere 1,1.17, suggests that the range of f consisis of all
v, except y = 1. To see that this is so, we solve {5) for x-in terms of y:

{x—~y=x+1
¥y —~y=x+1
Xy —x==y-+1

xy—=y+1

¥l
X =
¥

It is now evident from the right side of this equation that y = 1 is notin the range; otherwise
we would have a division by zera. No other values of y arc excluded by this equation. so the
range of the function f is {y: y 3¢ 1} == (e, 1)U (1, +w), which agrees with the result
obtained graphically. «

DOMAIN AND RANGE 1M APPLIED PROBLEMS
- In applications, physical consideraions often impose resirictions on the domain and range
of a function.
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.
% Example @ An open box is 10 be made from & 16-inch by 30-inch piece of card-
i bioard by cutting out squares of equal size from the four corners and bending up the sides

A (Figure 1.1.18a).

{(a} Let V be the velume of the box that results when the squares have sides of length x.
Find a formela for V asafunction of x.

(b} Find the domain of V.
(c) Use the graph of V given in Figure 1.1.18¢ to estimate the range of V.
(d) Describe in words what the graph tells you about the volume,

{ }L Solution (g). Asshown in Figure 11,185, the resulting box has dimensions 16 — 2x by
‘ f\é} 30 — 2x by x, so the volume V(x) is given by
i B
/ 1 Vi) = (16 - 2x)(30 = 2x)x = 480x — 92x% + 4x°

Selufion (b). The domain is the set of x-values and the range is the set of V-values.
Because x is a length, it must be nonnegative, and because we cannot cul out squarss whose
sides are more than 8 in long (why?), the x-values in the domain must satisfy

G=x<8

Splution {c). From the graph of V' versus x in Figure 1.1.18¢ we estimate that the V-
values in the range satisfy 0< V<725

Note that this is an approximation. Later we will show how to find the range exactly.

Solution (d). The graph tells us that the box of maximum volume oceurs for a value of X
(hat is between 3 and 4 and that the maximur volume is approximately 725 in®. Moreover, -
the volume decreases toward zero as x gets closer to 0 or 8 «

el “ o 800
? i-‘xi: “““““““““““““ 5 CE 708
| I [ x 6007
win| g 2500
[ i ] S A p
5 I ——. e W0t
] —~30 in —s E Hod
6ol
Side x of square cul {in}
{a) {hy @l

Figure 1.1.18

In applications involving time, formulas for functions are ofien expressed in ferms of &
variable ¢ whose starting vaiue is taken to be ¢ = 0.

p Example 10 AL 8:05 AM. & car is clocked at 100 fi/s by a radar detector that i3
positioned at the edge of a straight highway. Assuming that the car maintains a consta® :
speed between B:05 aM. and %06 AM., find a function D(¢) that expresses the distane
traveled by the car daring that time interval as a function of the me .
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Radar Tracking Sotution. 1t would be clumsy to use clock time for the vartable ¢, s¢ let us agree to mea-
= 2833 L sure the elapsed time in seconds, starting with.¢ = 0 at 805 AM. and ending with 1 = 60
= el at 8:06 a.M. At each instant, the disiance traveled (in ft) is equal to the speed of the car {in
Y500 et e fi/s) multipied by the elapsed time (in 8). Thus,
§ 2000 foerm
Z o0 | ; et Dy =100r, D<=y <6
- : L
O 10 26 30 46 30 0 The graphi of D versus 7 is shown in Figure 1.1.10, <
8:05 A Time r{s}  B:6 am,
Fignre 1.1.19 % ISSULS OF SCALE AND UNITS
In geometric problems where you want o preserve the “true” shape of a graph, you must
5 use units of equal length on both axes. For example, if you graph a circle iy a coordinate
e system in which I unit in the y-direction is smaller than 1 unit in the x-direction, then the
P circle will be squashed verticaily into an elliptical shape (Figure 1.1.20}. You must also use
L g” ‘ N E ¥ units of equal fength when you want to apply the distance formula
! ;
% - E B
xF‘“\., ) o d = \/{xz—xt)2+(}73“}‘1}2
e S ; . .
to calculate the distance between two points (x5, y1) and (22, y2) in the xy-plane.
T : However, sometimes it is inconvenient or impossible to display a graph using units of
¢ The circle is squaghed because | : . A !
© unit on the y-axis has a smalier | equal length. For example, consider the equation

. length than | unit on the r-axis, -

T
Y= X
Figure L.120 . . ) . o
If we want to show the portion of the graph over the interval —3 < x < 3, then there is
110 problem using units of equal length, since ¥ ouly varies from 0 1o 9 over that inserval.
However, if we want to show the portion of the graph over the interval —10 < x < 10, then
In-applications swhere e vaiables-on,  U1ETE 1S 2 pmb_lem keeping the units equal in 1§=ngth, smce the value of v varies berween 0
thetwo axes have unrelated units- sy, @nd 100, In this case the only reasonable way to show all of the graph that occurs over the

cefitimeters on the y-axis and seconds  imterval ~10 < x < 10is 1o compress the unit of length along the y-axis, as illustrated in
on the: v-axis), thep nothing is gained Figure 1.1.21.

by requiring the- units to have aual

lengths; choose the lengths to malie

the graph as clear as possible. ¥ , . 8 Y :
! ! ‘L ; '
n ‘g 9 ! !
. @E ! s % 1o k- /
E 7k ! i
_\,{\ z% ! ;5 Losr
C Q»U \\ 4 T & % 60 - f
D) T \ /
. L
\ S zf Citiy /
Vool 4 /
WL/ Vor
il sk f/'j f ﬁ;{ 1 %“\_i f; 1 i
Figure 1121 ~3-2.1 | )] 3 3 -0 -5 | 5 1o
¥ QUICK CHECK EXERCISES 1.7 (See page 16 for answers)
LoJRet fix)e ST+ 1 d 2. Line segments in an xy-plane form “letters” as depicted,
(&) The patural domain of f s .
(b} f(3} ==

) fP=Vy=
dy fix) = Tifx =
{e} The range of f is

{a} If the y-axis is paralie! to the letier I, which of the letters
Tepresent the graph of y = f(x) for some function f7
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@a} Flxy= T (b) hix}e=+'x = 3x*

D@/L )

Gy = | o foy =22
© W=y OO
G h'(X}mz—cosx

) glx) = /4 - x?
) Glxy=x"+2

13, Ja) fo0) = 3%
©) hi{x)=73+./x
{e) H{x)=3sinx

14, (@) fla)y=+5x -2 by glx) = VG- ax?
1 3
(€) hix} = 777 (@ Gy ==
34 /X £

(&) Hix) = sin® /%

15. (a) If youhad adevice that could record the Earth’s pop-

ularion continuously, would you expect the graph of

i population versus fime to be a continuous {unbro-

; ken) curve? Explain what might cause breaks in the |
curve.

{b) Suppose that a hospital patient receives an injection *
of an aniibiotic every 8 hours and that between in- |
jections the concentration € of the antibiotic in the |
bloodstream decreases as the antibiotic is absorbed |
by the tissues. What might the graph of  versus %
the elapsed time ¢ look like? |

!
i

16. (2) ¥ you had a device that could record the tempera-
ture of 2 room continuously over a 24-hour period,
would you expect the graph of temperature Versus
time to be a continuous {unbroken) curve? Explain
YOUT reasoning.

(b I you had a computer that could frack the number
of boxes of cereal on the shelf of & mmarket contin-
vously over a J-week pericd, wouid you expect the
graph of the number of boxes o0 the shelf versus
Hme to be a continuous (anbroken) curve? Explain
YOur reasonIng.

17. A boat is bobbing up and down oa some gentle waves. ,
Suddenly it gets hit by a large wave and sinks. Sketch |
a rough graph of the height of the boat above the ocean
floor as a Tanction of time, :

18. A cup of hot coffee sits on a table. You pour in some
coo! mitk and let it sit for an hour, Skefch a rough graph
of the temperature of the coffee as a function of time.

@Usa the equation y = x° — 6x + 8 to answer the following
" guestions.
{a} For what values of x is y = on
{b) For what values of x is y = - 107
(¢) For what values of x is y = 07

(d) Does y have a minimuin valne7? A maximum vaine? X

50, find them.

| Use the eguation v = | + /X to answer the following ques-
" tions.

{2) For what values of x is ¥ = 49
(b) For what values of x is v = 07
{¢) For what values of x 18 ¥ = 67
{d) Does y have a minimum value? A maximu vatue? If

50, énd them.
‘ 2 21, ;1\ ¢ shown in the accompanying figure, 2 pendulum of con-

stant length £ makes an angle & with its vertical positoen, ;-
Express the height & as a function of the angle 6. TR g

@Express the length L of a chord of & circle with radias 10 cm

: as 7 function of the central angle 6 (see the accompanying

TRIG!

figure).

Figure Ex-21

33-F4 Express the function in piecewise form without us- i
' ing absolute values. [Suggestion: 1t may help to generate |
| the graph of the function ] ‘
23, (a) Fflx)=x|+3x+1 (b)) glxy=lxi+x -~
., (a) flx)=3+12x—5 () gx) =3 ~2{~Ix+1i
B 1As shown in the accompanying figure, an open box is to be :
S nstructed from a rectangular sheet of metal, 8 i by 13
~ in, by curting out squares with sides of length x from cach
@ ﬁw% corner and bending up the sides. '
{ j‘é, % (2) Express the vojume V as a function of x.
’ (p) Find the domain of V.
{c) Plot the graph of the function V obtained in past {ayand
estimate the range of this functdon,
{d) Inwords, describe how the volume V varies with x, and
discuss how one might construct boxes of maxinum
volume.

Figure Eix-25

73 26, Repeat Exercise 25 assuming the box is constructed in e
same fashion from a 6-inch-square sheet of metal.
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| constniction company has adjoined a 10002 rectangular
;{:\M trclosure to its office building. Three sides of the enclosure
are fenced in. The side of the building adjacent to the en-
closure is 100 i long and a portion of this side is used as the
fourth side of the enclosure. Let x and y be the dimensions
of the enclosure, where x i3 measured parailel to the build-
ing, and let L be the length of fencing required for those
dimensions.
{a} Pind a formuda for L in terms of x and 3,
{b) Find a formula that expresses L ag a function of x alone.
{c} What is the domain of the function in part (b)?
(dy Plotthe function in part {b) and estimate the dimensions
of the enclosure that minimize the amount of fencing
reguired.

B 28. Asshown in the accompanying figure, a camera is mounied
at a point 3000 {ft from the base of a rocket launching pad.
The rocket rises vertically wheri lautiched, and the camera’s
elevafion angle is continually adjusted to follow the bottors
of the rocket.

(a) Express the height x as a function of the elevation an-
gled.
{(b) Find the domain of the function in part (a).
{c) Plof the graph of the function in part (a) and use it to es-
" dimate the height of the rocket when the elevation angle
Is /4 » 0.7854 radian. Compare {his estimate to the
exact height. [Suggestion: I you are using a graphing
caloutator, the race and zoom features will be helpful
- here.]

yd

{ 3000 £ |
Gamers Fignre Ex-28

. A soup company wants to manufacture 2 can in the shape
~of a right circalar cylinder that will hotd 500 cm’ of liquid.
The material for the top and bottom costs 6.02 cent/cx?,
and the materiai for the sides costs 0.01 cent/cm®,

{2} Bstimate the radins » and the height & of the can that
costs the least to manufacture. [Swggestion: Bxpress
the cost C in terms of r.]

(by Suppose twt the tops and bottoms of radius r are
punched out from square sheets with sides of length
2r and the scraps are waste. I you aliow for the cost of
the waste, would you expect the can of least cost to be
taller or shorter than the one in part {a)? Explain.

{c) Estimate the radius, height, and cost of the can in part

(b}, and determine whether your conjecture was correct.

. The designer of a sports facility wants to put a quarler-mile
(1320 £t} running track around 2 foothail field, oriented as

1.1 Functions i5

iz the accompanying figure. The football ficld is 360 ft

long (including the end zenesy and 160 ft wide. The track

consists of two straightaways and two semicircles, with the
strajightaways extending at least the length of the football
field.

(a} Show that it is possible (o construet a quarter-mile track
around the football field. [Suggestion: Find the shortest
track that can he constructed around the field.]

(b) Let L be the length of 2 straightaway (in feet), and let x
be the distance {in feet) between a sideline of the foot-
ball field and 2 straighiaway. Make a graph of L ver-
Sus X.

(¢} Use the graph 1o estimate the value of x that produces
the shortest soaightaways, and then find this value of x
exactly.

{d} Use the graph to estimate the length of the longest pos-
sible straightaways, and then find that length exactly.

s
e ]

a8

o

] 360" d

Figure Ex.30
 31-32 (i) Explain why the function f has one or more holes
' in its graph, and state the x-values at which those holes oceur, '
. {fi) Find a fupnction g whose graph is identical to that of f, !
¢ but without the holes. J

Cp 2 20!
(x -+ 2)\{x D 4 fy = T x|
x4+ Dlx -1 ix
33. In2001 the National Weather Service introduced a new wind
¢hill temperature {WCT) index. For a given ouiside temper-
ature 7' and wind speed v, the wind chill temperatore index
is the eguivalent temperature that exposed skin would feel
with 2 wind speed of v mi/h. Based an a more accurate

model of cooling due to wind, the new formula is

i fxy=

1. 0zwxs
WO = o 5
35,74 4+ 0.62157 - 35750018 4 0.42757%18, 3 <y
where T is the temperature in *F, v is the wind speed in
mi/h, and WCT is the equivalent temperature in °F. Find
the WCT fo the nearest degree if T = 25°F and
(@) v=3mi/h (b) v=15mi/h (c} v=46mi/h
Segeeer  Adapted from UMAP Module 638, Windehill, W, Bosch and
L. Cobb, COMAP, Adington, MA.

! 34-36 Use the formula for the wind chill temperature index
| described in Exervise 33, i

34, Find the air temperature to the nearest degree if the WCT is
reported as —60°F with a wind speed of 48 mi/h.
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The thought process in this example suggests 2 general procedure for decomposing 2

function h inte a composition i = fog:

s Think about how you would evaluate A(x} for 2 specific value of x, trying to break the
evaluation irto two steps performed in stccession,

« The first opetation in the evaluation will determine a function g and the second a fune-

tion f.

= The formuis for & can then be written as Aix) = f(g(x)).

For descriptive purposes, we will refer 1o g as the “inside function™ and f as the “outside
function” in the expression f{g(x}). The inside function performs the first operation and

the outside function performs the second.

p Example 5 Bxpress {x) = (x — 4)° as a composition of two functions.

Solution. To evaluate h(x) for a given value of x we would first compute x — 4 and then
raise the result to the fifth power. Therefore, the inside function (first Gperaficm) is

glxy=x—4

and the outside function (second operation) is

so f(x) = flg{x}). Aszcheck,
Flal) =g = (x ~4)° = hix) <

flay =i

» Example & Express sin{x®) as & composition of two functions,

Selution. To cvaluate sin(x?), we would first compute x° and then {ake the sine, so
g(x) = x7 is the inside function and f(x} = sin x the outside function. Therefore,

sin(x?y = flgix)y

Table 1.3.1 gives some more examples of decomposing functions inte compositions.

glx) = x7 and flr) = sinx I k-1

Tabhle 13,1
gix) Fix
FUNCTION INSIDE OUTSIDE COMPOSITION
(x*+ 1) PIRS| xt0 (x*+ 1) = flglx)
sin® x sin x x5 sind x = F( (i
tan(xy % @an x tan{x”) = flgleh
4~ 4 - 3x Nx N4 - 3x = flelzh
B VX Vx B4 8 +x = flgley)
) , 1 1
x+1 x X I+ = flax)
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Tabie 1.3.2

OPERATION ON L Adda positive Subtract a positive

Add 2 positive

Subtract a positive

v = flx} constant ¢ to f{x) constant ¢ from F{x) constant ¢ B X comstant ¢ from x
H
NEW BQUATION 1} y=flai+e y e flr)~c y = flx+) y= flr-¢)
GEOMETRIC l Transiates the graph of Transiates the graph of Translates the graph of "Fransiates the graph of
RFFECT ! = F{x) up ¢ units y = flay down ¢ units y = f{x} left ¢ units y = f{x)vight ¢ units
! &Y . &Y AY
l % jymx*+2 1 ; y={x~2')2
5, i L y %2 y=xt ‘\
Ry, Lol e L A
AT gYEX % J Y=o 5 L4 i
EXAMPLE Lo IRy Y
i x Yoo f x LA A
e _.v.——JrL—-———-————P‘\ 4 rvosems—

Figure 13.3

» Example 8 Sketch the graph of

{2y y=/x—3 by y=~x+3

Solution. The graph of the equation ¥ = ~/Xx = 3 can be obtained by translating the graph
of y = /% right 3 units, and the graph of y = «/x + 3 can be obtained by franslating the
graph of y = /% left 3 units (Figure 13.3). <«

» Example  Sketchthe graph of y = {x — 3+ 2.

Sofution. The graph can be obtained by two wranslations: first transtate the graph of
y = |x] right 3 units to obtain the graph of v = jx — 3§, shen translate this graph up 2 units:
to obtain the graph of ¥ = |x — 3| + 2 (Figure 1.3.4). If desired, the same result can be’
obtained by performing the translations in the opposite order: first iranslate the graph of:
ix} up 2 units to obtain the graph of y = {x{ + 2, {hen transtate this graph right 3 upits
obtain the graph of y == ix — 3] + 2.

¥

N
|34

N i Lt
[

Figure 1.3.4

» Example 10 Skeich the graph of y = 2% - 4x + 5.

Sofution. Completing the square on the first two terms yields

}r:(x2w4x+4]m4+5:(x“2)2+i
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st
{see Web Appendix G for a review of this technigue). In this form we see that the graph
can be obtained by translating the graph of y = 2 right 2 units because of the x — 2, and
up 1 unit because of the 1 {Figure 1.3.5). =

REFLECTIONS

The graph of y = f{-x) is the reflaction of the graphof y = f{x} about the y-axis because
the point {r. y) on the graph of f{x) is replaced by (—x, y). Similarly, the graph of
y = = flx) is the reflection of the graph of y = F(x) about the x-axis hecause the point
(x, ¥} on the graph of fx} is replaced by (x, -y} {the equation y = — {(x) is equivalent

10~y = Flxil This is summarized in Table 1.3.3,

Table 1.3.3
OPERATION ON i
¥y = fix) | Replace x by -x Multiply f(x) by -1
NEW SQUATION | y = fl—x) ¥ = =l
Q&} GROMETEIO Reflects the graph of Reflacts the graph of
‘\ EFPECT ¥ = f{x) about the y-axis ¥ = f{x) about the x-axis
SR \ - A¥ N
’ i o 3 [ )F = x_\
Py - C
X kﬁ\ EXAMPLE i ol ;""; Tit L F
0 | o %

» Exampie 11 Sketch the graph of v = /3 ~ ».

Solution. The graph can be obtained by a reflection and a wanstation: first reflect the
graphof v = /X aboutthe y-axis to obtain the graphof y = /¥, then wransiate this graph
tight 2 units to obtain the graph of the equation y = = (x — 29 = 3 — ¥ {Figure 1.3.0),

o
¥ ¥ ¥
6 5? GT—
: ey W”(M%r“ f ‘ ,_L_Tw? N TR L M—IM - Ly Lk
o § 8] i L 1 0 ﬁw i 10 BT
& r -5 3 -4
y =l y=337%

Figure 1.3.6

» Example 12 Sketch the graphof y = 4 — |x — 21,

Selufion. The graph can be obtained by a reflection and two translations: Grst transliute
the graph of y = |x| right 2 units 1o obtain the graph of y = |x — 21 then reflect this araph
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ahout the x-axis to obtain the graph of ¥ = —[x — 2{; and then translate this graph up 4
units to obtain the graph of the equation y = —jx —2[+4=4 — jx — 2} (Figure 1.3.7),
qg
Ly Ay
. B} 81
s .
i EQN
‘|||"\/|/\/11x \ll/%:l"\lii
~8 - g -6 10
- / e K‘“‘mﬁ
B .
-8 }
Sedolreal
Figure 1.3.7 )
i oY \ (
% SYRETCHES AND COMPRESSIONS d@m g\f\ ﬂZi
Multiplying f{x) by 2 positive constant ¢ has the geomietric effect of sﬁ'etcfiing the graph

of y = f(x) in the y-direction by a factor of ¢ if ¢ > 1 and compressing it in the y-

gDésc;r'ib'e:%hé--éédnjetrit&é&_ff-ec't‘ of il
tiplying ‘2 function of by ia negative
T eonstan Hmrmé of Jefigciicn_éxﬁd’
stretthing or tompressing What s thé
gebmetric affectiof multiphing the dn-
depsndent verble f afunction Fiby
& negative. constant?

direction by a factor of 1/¢if 0 < ¢ < 1. For exarnple, mutiplying f(x} by 2 doubles each
y-coordinate, thereby stretching the graph vertically by a tactor of 2, and multiplying by 1
cuts each y-coordinate in half, thereby compressing the graph vertically by a factor of 2.
Similarly, multiplying x by a posifive constant ¢ has the geometric effect of compressing
the graph of y = £(x) by a factor of ¢ in the x-divection if ¢ > 1 and stretching it by a factor
of 1/eif 0 < ¢ < 1. [If this seems backwards to you, then think of it this way: The value
of 2x changes twice as fast as x, so & point moving along the x-uxis from the origin will
only have to move half as far for y = f(2x} to have the same value as v = f{x), thereby
creating a horizontal compression of the graph.] All of this is stemmarized in Teble 1.3 4.

Tabie 1.3.4

OPERATIONOX | Multiply flx) by ¢ Multiply f(x) by ¢ Multiply x by ¢ Multiply x by ¢
¥ = flx) > O <e<l) fc>1 D<o
NEW EQUATION | = cf(3) ¥ = of ) ¥ = flew ¥ = flexy
GEOMETRIC Swretches the graph of Compresses the graph of Compresses the graph of  Stretches the graph of
BEFECT y =[x} vertically by 2 ¥ = flxy vertically dy a v = f{x) horizontally by a  y = fix} hovizontally by 2
facior of ¢ factor of L/ tactor of ¢ factor of 1/¢
4 AY 3
., y=2cosx ¥ COs X L
. 1 08 X f,«"‘“&_ i y=loosx 1;;\2\ o8 X ‘,/_/—_ cos2x 1.
£ b, ¥, y= 5 £ g, e, = ; (,,«""“‘n T, 4 . - e ) e
EXAMELE SIS YT M\ﬁ V- -f;\r% i'ﬁ\ﬁ.ﬂfﬂx S
4 LA ey NS .
\\*’"’j I, FECOs X .
B EYIAMETRY
Figure 1.3.8 illustrates three types of symunetries: symmeiry about the x-nxis, symnei}

about the y-exis, and symumnetry about fhe origin. As illastzated in the figure, a curye i
symmetric about the x-axis if for each point (x, y) on the graph the point {x, —¥) 18 alsd

on the graph, and it 1§ symmetric about the y-axis if for each point (x, v) on the gl‘ﬂph_
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47 the point (—x. v) is also on the graph. A curve is symmetric about the origin if for each
Ly paint {x, y) on the graph. the point (~x. —y) is also on the graph. (Equivalently, a graph is
| [f,,f‘f"m symmetric about the origin if rotating the graph 180° about the origin leaves it nnchenged.)
"WM This suggests the following symmetry tests.

S

g (e, =v)

L33 raronrew (Symmerry Tests),

 Symmetric about - (@) A plane curve is symmetric aboui the v-axis if and only if replacing x by —x in its
XX eguation produces an equivalent equarion.
; iy ; (bY A plane curve is symmetric about the x-axis if and only if replacing y by —v in its :
. ) ‘ﬁ‘ e ?{ o _‘ equation produces an equivalent equation, :
oS . © (e) A plane curve is symmetric about the origin if and only if replacing both x by ~x

and y by —Y in its equation produces an equivalent EQUATLON,

ey » Example 13 Use Theorem 1.33 10 identfy symmetries in the graph of x = y2,
: Symmatric about

the y-axis . . . T " .
e — Solution, Replacing y by —y yields x = (~y)?, which simplifies to the original equation
Wy x = y*. Thus, the graph is symmetric about the x-axis, The graph is not symmetric about
' 2 the y-axis because replacing x by ~x vields ~x = y% which is not equivalent to the original
Pt equation x = y%. Similarly, the graph is not symmetric about the origin because replacing x
5 . N . . “ P .
A by ~x and v by —y yields —x = (~ )2, which simplifies to —x = ¥, and this is again not
s ‘_‘,/ y y p (=
] equivalent to the original equation. These results are consistent with the graph of x = ¥
Tl shown in Figure 1.3.9. « : i
j‘f_xa '}‘\5 ! t
/
M if & EVEN AMD ODIF FUNCTIONS
: Symmietric abodt | . . . oo , L
C the origin Zif»  Afmiction f s said 10 be an even function if
Figure 1.3.8 Jlmx) == flx)
Ly ) and is said to be an odd function if
) x=y
/,/"""’M fl=x) = = flx)
- i Geemetrically, the graphs of even functions are symmetric about the y-axis because replac-
, " ing x by —x in the equation y = f(x) yields y = f(—x). whichis equivalent to the original
ﬁ%ﬁ%_ squation y = f{x) by (8) (see Figure 1.3,10}, Similarly, it follows from (Y) that graphs of
e, odd functions are symmetric about the origin (see Figure 1.3.11). Some.examples of gven .
functions are x2, x%. x%, and cos x; and some examples of odd funations are 2% 00 x7 and
Figure 1.3.9 $inx.
i, 5 h
W«:@_'ﬂ; /?W,‘i ﬂ' ‘
P \(‘% %, o % o fln
%’ 5 —X i ‘;,." X
i 51 N 7 TN
f(-mél A 1% Fix) Flexya b y
! L% x LN
Fomx X Y )
Explain why the. graph of & nanzero / 5

function' cannot be symmetric about

the x-axs. - Figure 1.3.10  This is the graph of an Figure L3011 This is the graph of an
’ : even function since f{—x) = f{x). edd fancton sinee f—x) = — flx).




38 Chapter ¥ / Functions

& GUICK CHECK EXERCISES 1.3

(See page 32 for answers.)

1. Let f{x) = 3./x — 2 and g(x} = ix}. In each past, give the
formula for the function: and state the corresponding domain.

(8 f + E mrmme DOMAEIDS
by F—-g : Domainy
@) fg Domain:
idy F/gi e Domaim

2. Let fix) =2 —x% and g(x) = /2. In each part, give the
formula for the composition and state the corresponding

domain. .
(@} f68 e BlOmaim
b gofr .. Domain

EXERTISE SET 1.3 Graphing Utility

1+ (x — 2)° may be ohiained by shifi-
_{lefi/’ o (10 ER I A —

@ The graph of y =

ing the graph of y = x?

unit{s) and then shifting this new graph {up/down)
. BY e URHL{S).
™ {
. Jx+ 1, —-2=<x<0
flx) = )
fx — 1 D<x<?

{a) The letter of the alphabet that most resembles the graph

of fis —
{b) Is f an even fanction?
s SH His,
gax ){)Sm@ Sil m oot

1. ¥The graph of a function f is shown in the accompanying
/figure. Sketch the graphs of the following equations.

(ay y= flxy~1 (B y= flx -1

© y=4ftx) @ y=f{~3x)

AY

Figure Ex-{

2. Use the graph in Bxercise 1 to sketch the graphs of the
following equations.
(m) y = —f{-x) () yv= fl2-x)
©y=1—fQ=-x3 (@ y=3572x)

’?.\irhe graph of a function f is shown in the accompanying

Hgure. Sketch the graphs of the following eguations.
by » = f{2x}
(@ y =1~ 1flx}

T

(@) y=flx+1)
(e) y=iflxl

AN

v

z | Lo L Figore Ex-3

4, Use the grapb in Exercise 3 to sketch the graph of the
equation ¥ = fliri).

M

| 5~10 Sketch the graph of the equation by translating, re- |
flecting, compressing, and stretching the graph of y = xt
© appropriately, and then use a graphing vtility to confirm that

| your skeich is correct. :

a y= =2y + 1Y -3

6. y——(X-3)2+”
B B y=x*+6x— 10
10, y = J(x* ~2x +3)

! 1114 Sketch the graph of the equation by transiating, re-

! fecting, compressing, and stretching the graph of y = %
| appropriately, and then use a graphing wiility 1o confirm that |
- your sketch i correct.

@ y=3-a/x+ 1 T I y=1+vx—4
]\, = LT T 14 y = —3%

| 15-18 Sketch the graph of the equation by (ranslating, re- !
! flecting, compressing, and stretching the graph of y = 1/x ;
- appropriately, and then use » graphing utility to confirm thal
. your sketch is correct.

Bl 16, y =
1w x
@lg‘)sz__ﬁ

! 1923 Sketch the graph of the equation by transiating, &
' fecting, compressing, and streiching the graph of ¥ = fx]
| appropriately, and then use a graphing utility to confizm that
. your sketch is correct.
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2 2L }:wézx-wiiJ» i B gz, ym\/}~ﬂ4x+4 N ) ) - o

-

i -;5_2£~” Sketch the gr dph of the equation by translanng, re-
' fecting, compressing, and stretching the graph of y = Hx
' 3pproprmtely and then use a graphing uility to confirm that
your sketch is correct,

. . : 4 fi) = gl = «/— hix) = —
oy g | =2 5 24,y \/;« T3-3
b 2?' Y \/{__ 3 2%, rE —% = AP 7 Ex;}ress J as a composition o‘!’two functions; that is, |
cy=iv el = v - find g and A such that f = gok. [Note: Each exercise has |

. {a} Sketch the graph of ¥y = x 4 x| by dddl_n.g the corre- " more thar one solution. ]

f(x}_t + 1, gix) = ng__ﬁ

w2

27
sponding y-coordinates on the graphs of y = x and
y o= ix) N e FrE iy (2 2,
{b) Express the equation y = x + x| in plecewise form @{a) Sy = x4 2 (b) flx) =1ix ]“ 3x 45
with no absolute values, and confinm that the graph you 42, () fix) =2t 4] by flx) = —
cbtained in part {a) is consistent with this equation. . L= ;
71 28. Sketoh the graph of y = x + (1/x) by adding correspond- 143, J(a) fix) = sin*x (b} Flx) = m—romm
- ing y-coordinates on the graphs of y == x and y = 1/x. Use s 5+ cosx
a graphing wiility to confivm that your sketch is corect, 44, (1) fix) = 3sin{x?) (b} fix) == 3sin’x +dsinx
| 72930 Find formulas for f +g. f —g, fg. eand flg, and ; - &%-48 Express F as a composition of three functions; that . :
J SL&[E the demams of the tunhctions, . is, find f, g, and & such that F = fogoh. [Note: Eaz,h

i exercise has more than one solution. ]

@ ) =245 7T, glx) = =1 : e SO |

M, Let gix) = /x. Find

|

|

N i

a [5 2 +2 ¥ 3g(s ;

@ g8 +2) ®) sWED (0 3550 . i 48. Find the domain of ge f for the functions f and g in
( ) (&) g{g(x) (Fy (glxn? -2 (x%)

Exe;'ci&;e 47,
(g) ﬁ(W\/Y) M g{x — 1Y)

. N TSN

30, flx) = ; - g(x) =.i'_ 45. (a) Flxy =(§—i—sm(x2;)3 by Flay=v1- %
3EYLet flx) = /% and g(x) = x> 4 L. Find 46. (@) Flx) = 3 (b) Flx) =[5 + 2x]
(@) j(g<”)} (by g{ f14N
© FUFL6)) y 2(2 (0.
32 Letglx) =n — x¥ and A{x) = cos x. Find -
E (@) g(R(0)) (by A(g(v772)) @ Use the data in the accompanying table o make a plot
- (©) gle(1)) (@) Athin/2)). of y = Flgle).
TENLet fix) = x% 4+ 1. Find i [ — - : ]
() fir) (b} f(t+2) ey flx+2) | ; el elib2ys .
i . 1 s ! ST NV N U B R
@ r ( ;) & flx+h) #y Flox; ;_fi%i.. 47 -31-2 U
s Gyl -1 ] 0 1 2] 3|2 -3
@ FIJF) (hy f(3x). 8
Table Ex-47

j 35~"~'5§ Find 1ormu£as for fog and gof, and state the do-
miains of the compositions.

Flxy = )f?'., glxy=+1—x
36, fx)= /%~ 3, glxy =2+ 3

o . 1 +x x
: A fixy = T §ix) = Pyl
38, flx) = Iy gley = ~

i Fipure Ex-49
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1 5. Sketch the graph of v = g{ F{x)y for the functions
] graphed in Exercise 49.

| 51 Use the graphs of f and g in Bxercise 49 to esti-
mate the solutions of the eguatons f(glx)} = O and

g{fxhn =06
| 52, Use the table given in Exercise 47 to solve the equations
Flgx)) = Qand g(fix)) = 0.
i

e
fw) = £

w— X

|
|

H
|
1

_1ify as much as possible.

S f) =30~ 5 B4, fix) = x4 6

) = t/x 56, f(x) = 1/x?
“57. Classify the fanctions whose values are given in the accom-
panying table as even, odd, or neither.

EREREER 213
323 NERE
T2 02 - -4
-5 LB 152 g -5 2

Table Ex-57

58, Complete the accompanying table so that the graph of
v f(x)is symmetric about

(a) the y-axis (b the origin.

u}l\ 2i
zl 1-~1E0* j_us'%

Tuble Ex-58

3

5@ The accompanying figure shows 2 portion of a graph. Cong-
plete the graph so that the entire graph is symmetric about
{a) the x-gxis (b) the y-axis () the origin.

66, The sccompanying figure shows a portion of the graph of 2
function f. Complete the graph assuming that
(a) f isaneven funcion (b} f is an odd function.

TJ’

Figure Ex-59 Figure Ex-6¢
61, Classify the functions graphed in the accompanying fgure

as cven, odd, or neither,

%QL \f]) U}M g

\ ‘;‘f/ v
N 3 fl ,f/ :
i /
/
(@ ®)

Figure Ex-61

62. In each part of the accompanying figure determine whether
the graph is symmetric about the x-axis, the y-axis, the ori- |
ain, or none of the preceding.

| ji/

A

Y

&Y

(a) (&)
7 ”%“k
| N
1 i
{c) ()

Figare Ex-62

@n each part, classify the function as even, odd, or neither. -
@ flx) = (o) fix) =2 "3
{e) flxy = ix| (d flx)=x+]
oxt—x .
(&) F&) = T3 () f) =2
5 X
64. Suppose that the function f has domain all real numnbers.
Determine whether each function can be classified as ever
ar odd. Explain.
iy A (=X ey o Fl—=X)
(wmw=51%&ﬁ—@hmmﬂﬂﬁﬁi
65, Suppose that the fupction f has dorrain all roal nomber:
Show that f can be wriiten as the sum of an even fanctod
and an odd function. [Hint: See Exercise 64.}
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tween positive and pegative point charges is in{ersely pro-

portional to the square of the distance ¢ between them.

{a) Assuming that the force of attraction between two point
charges is (L0005 newton when the distance between
them is 0.3 meter, find the constant of proportionality
{with proper units).

(b) Find the force of attraction between the point charges
when they are 3 meters apart.

(¢) Make a graph of force versus distance for the two
charges.

{d) What happens tothe force as the particles get closer and
closer together? What happens as they get farther and
farther apart?

26. Tt follows from Newton's Law of Universa} Gravitation that
the weight W of an object {relative to the Barth) is inversely
proporiional to the square of the distance x between the
object and the cemter of the Earth, that is, W = C/x%.

{a) Assuming that a weather sateliite weighs 2000 pounds
on the surface of the Earth and that the Earth is & sphere
of radius 4000 miles, find the constant

(b) Find the weight of the satellite when it is 1000 miles
above the surface of the Earth.

{¢) Mauake a graph of the satellite’s weight versus its distance
from the center of the Earth.

{d) Is there any distance from the cepter of the Barth at
which the weight of the satelfite is zere? Explain your
reasoning.

E 27, #n each part, mateh the equation with one of the accom-
%/ panying graphs, and give the equations for the horizontal

and vertical asymptotes.
2
-]
(&) y = s

2xt . 4
;o= [ R R e—
Q{C) F x4 1 tdy 3 (x -+ 232

=

Figare Ex-27

SeC W4

28, According to Coulomb’s law, the force F of autracti .Ja'“ﬁ‘éﬂ:/ i
g

28. Find an eguation of the form y = £/(x? + bx + )
whose graph is a reasonable maich to that in the ac-
companying figure. Check your work with 2 graphing
utility.

,
i
1 ! {
.
|

Sl
|
i

il

L
i
I
]i figure Ex-28

: 29=-30G Find an equation of the form v = D 4 Asin Bx or
f ,ﬁ\i) + Acos Bx for each graph,

©

(IR 43

;f‘ X\\ﬁ s E\\\ x //: :
VAR AV

(@) (b)

>

()
Figure Ex-29
30.
47 3

o
g N
¥

[
B T ﬁ;},_.._._.
A

@) (b)
{ oy
£ Y,
I ;) \! ¥
kg
€/ '2'
= i
-5 : }
(e}

Figare Ex-30
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;&)’ y = e

+ 1

Figure 1.5.1

WARNING

can be solved for x as a function of ¥
¥ = v v 1

The first eguation is better for computing y if x is known, and the second is betier for

if y is known (Figure 1.53.%). _
ection is o identify relationships that may exist between

= f(x)is expressed as x = gly), or conversely.
= 2?41 and gly) = ¥ — | discussed above.
ther order they cancel out the effect of one another

computing x

Oras primary inferest in this s
the functions f and g when an equation y
Bor example, consider the fanctions f(x
When these functions are composed in e

in the sense that
p(f) = e — 1=V -l =x
Fle) =lgFP +1=y - P +l=y

so iraportant that there s some termninology

(h

Pairs of functions with these iwo properties are
for them.

. L51  DEFINITION. 1f the functions f and g satisfy the two conditions

g(f(x)) = x forevery ¥ in the dormain of [
Flg(yy) =y forevery ¥ in the domain of g

! then we say that fis an inverse of g and g Is an inverse of f or that fand g are inverse 3

. functions.

funciion f has an inverse, then that inverse is

it can be shown {Bxercise 34) that if a
then we are entitled o talk about “the” inverse

I f is a function, then the —1 in the
symbol f~1 aiways denotes an inverse
and never an exponent. Thatis,

f ~l(x} never means };%;;

unique. Thus, if a function f has an inverse,
of f,in which case W denote it by the symbol f -

¢ computations in (1) show that g(yy= o¥— [ is the inverse aof

p Example ¥ Th
notation as

Flx) = x -+ 1. Thus, we can SXPress g in inverse
oy = vl

and we can express the equations in Definition 1.5.1 as

FUF) = x forovery xin the domain of f

FFIN =y forevery ¥ irs the domain of /™

We will call these the cancellation equations for f and f -1 =

% CHANGING THE INDEPENDENT YARIABLE
The formulas in (2 use X as the independent va
for 71, Although it is often convenient (0 Use
71, there wili be occasions on which it 1s desirabl
for both. For example, if we want 1o graph the functions f
xv-coordinate syster, then we would want 10 Bse x 45 the in
the dependent variabie for both functions, Thus, Lo graph the functions Fix)

Frigyy= &y~ Tof Example 1 in tie same xy-coordinate system, we would change (e
independent variabie y to x, use y as the dependent vasiable for both functions, and graph

the equations y = Pl and y= N

rigble for f and y as the independent variable
different independent variables for f and
o to use the same independent variable
and £ together in the 520
dependent variable and ¥ 88
= :{3 +1 and




of

2

ble
nd
ble
me

as
nd
the
iph

The results-in Example 2 should make
sense o you intuitively, since the oper-
ations of mu%tlplymg by 2dnd mulu;:ly
ing by 5 ineither order ca nealthe effect
ol bhe another, asdo thie aperations of
cubing-and taking » cubevoot:

in- general;- if. #: has. an- inverse and’
Flag) = b thenthe procedurs in Exam-
ple 3.shows thatw = 77 4b); that is,
77" maps sach-output of £ back ints-
the corresponding input (Figlre: 1:5.2).

5%%
gy
F g
f/ J
r
rd /
/ #
¢ ,//
o]
N
Figure 18,2 I f maps « to b, then
£V imaps b back to .
i
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We will talk more about graphs of inverse functions later in this section, but for reference
we give the following reformulation of the cancelfation equations in (2} using x as the
independent variable for both f and /-

FY A = x  for every x in the domain of f o
3

Ff oy =x  for every x in the domain of 7!

» Exampie 2 Confirm each of the following,

{ay The inverse of f(x) =2xis f~(x) =1
{b) The inverse of f(x) = x7is 7~ (x) = £}/*

Salution (ﬁ) f“i(fﬂx)} — f—“l(f)t) % X} ==X

FUTNn = fle) =2 (dx) =

Solurion (). . ;3.
FURE) = f ) = () = x

FFT) = £ = () =& <

» Example 3 Given that the function [ has an inverse and that f(3) = 5, find £-'(5).

Solution.  Apply /=" 10 both sides of the equation £(3) = 5 to obtain

FTHABY = FHE)
and now apply the first equation in (3) 10 conciude thar £~(5) = 3, «

DOMAIN AND RANGE OF INVERSE FUNCTIONS
The eqmtmns in (3) imply the following selationships between the domains and ranges of
fand /74 _

domain of £~ = rangc-: of f i

rangeof £71 = domain.of f )
One way to show that two sets are the same is to show that each is & subset of the ofher,
Thus we can establish the first equality in (4) by showing that the domain of 7' is a subset
of the range of f and that the range of f is a subset of the domain of F~!. We do this
as follows: The first equation in (3} implies that F~* is defined at f(x) for all vahues of x
in the domain of £, and this implies that the range of f is 2 subset of the domain of fL
Conversely, if x is in the domain of F~7, then the second equation in (3) implies that x is
in the range of f because i is the image of f~!(x). Thus, the domain of £~ is a subset of
the range of f. We leave the proof of the second equation in {4) as an exercise.

& MEETHOD FOR FiNDING INVERSE FUNCTIONS

At the begirning of this section we observed that solving v = iy =x 41 for s as a
function of y produces x = f~'(y) = ¥y =1, The following theorem shows that this is
not accidenial,

| 152 rtesomsm. [Fan equaz:on y = f(x) can be solved for x as a function of y, say
i oxo==g(y), then f has an inverse and that inverse is g(y) = F~'(y).
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PROOF.  Substitating y = f(x)intox = g(y) yields x = g(f{x}), which confirms the first
equation in Definition 1.5.1, and substituting x = g{y) into y = f(x) yields y = flg(y)), |
which confirms the second equation in Definition 1.5.1. g

Theorem 1.5.2 provides us with the following procedare for finding the inverse of a
function.

i Procedure for Finding the Inverse of o Funetion f
Step 1. Write down the equation ¥ = f{x) ' |
Step 2. Tt possible, solve this equation for x 4s a furction of y.

Step 3. The resulting equation witl be x = (), which provides formula for £

with y as the iﬁde:pen‘deﬂt variable.

A altermative wey to obtairi 2 formuia _ : )
for o ‘fz L“’-'l:; ast:-‘e ;?:ezf‘?‘_ie“; “Step 4. 1 y is uccepiable as the independent variable for the inverse fanction. then vou
yvatiable is toyeverse the n =3 Xaar . N - ' e e i .

DR ; R - are dong, but if you wantio have x asihe indepentient variable, then you nead

v at the ouiset and séhie-the equation =Y iy : i : ’ N
¥ o fly oy yas a function of%:: . tointerchange x and i the equation x = Frilyio oblap ¥ = f Y.

» Example 4 Find 2 formula for the inverse of F{x) = «/3x — 2 with x as the indepen-
dent variable, and state the domain of F . '

Solution. Following the procedure siated above, we frst write
y o= A/ 3x e 2
Then we solve this equation for x as a function of y:
yr=3x -2
x= 307 +2)
Qince we want x to be the independent variable, we reverse x and-y in the Jast eguation 10
produce the formula £ = % (2 +2) ) x

We know from (4) that the domain of f -1 is the range of f. In general, this need not be
the same as the natural domain of the fomula for f -1, Indeed, in this example the natural
domain of {5} is (—eo, o), whereas the range of F(x) = +/3x — 218 [0, +e2). Thus, if we
want to make the domain of f~ ' clear, we must express it explicitly by rewriting (5] as

FHoy =it D), x20 @

1 EYISTENCE OF INVERSE FUNCTIONS
The procedure we gave above for finding the inverse of a funcuon F was based on solving
the equation y = f(x) for x as a function of y. This procedure can fail for two reasons—e
function f may not have an inverse, or it may have an inverse but the equation y = f(¥)
cannot be solved expiicitly for x as a function of y. Thus, it is important o establish
conditions that ensure the existence of an inverse, $ven i€ it cannot be found exphicitly.

If a function f has an fnverse, then it must assign distinct outpwis distinct irputs
For example, the function f(x) = +2 cannot have an inverse because it assigns the same
value o x = 2 and x = —2, namely, f(2) = F(-2} = 4. Thus.1f f{x) = %2 were to have
an inverse. then the equation f{2) = 4 would imply that f~1(4) =2, and the equatioh
f{=2) = 4 would imply that f =14y = 2. But this is impossible because fH(4) cansd
have two different vatues. Another way to see that f(x) = x7 has no inverse is to atemp
to find the inverse by solving the equation ¥ = ¥2 for x as & function of y. We run inf
trouble immediately because the resulting equation x = t./y does not expsess x a5 2 singh
function of y.
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A fanction that assigns distinet owputs to distinet wputs is said to be ore-fo-one or

/:;;W s0 we know from the preceding discussion that if & function f¥msarifiverse,
- [

it must he one-to-one. The converse is also rrue, thereby establishing the following
theorem.

CLES THROREM,

A function has an inverse if and only if it is one-jo-one,

Stated algebraically, a function f 18 one-to-opg ifand only if flx,} # f(x3) whensver
x| # Xz; stated geometrically, a funCtion § 18 one-to-one if and only if the graph of y = f{x)
15 cut at most once by any hovizontal line (Figure 1.5.3), The latter statement together with

Theorem 1.5.3 provides the following geometric iest for determining whether a function
has an inverse.

LY
¥ = f0
7o - }W T fx)
e
. o O <
foxd g ! A N
P é PO P
o A0
- ! 3 [ ] x
X Xy Xy Ky

One-to-one, since fixg) # flxy) ; ¢ Mot one-to-one, since
: ifx‘ #.X

s flegd = flxyand x, £ x,

Figure 1.5.3

154 raworem (The Horizontal Line Test). A function has an inverse function if |
¢ and only if iis graph is cur at most once by any horizonial line.

w» Example 5 Use the horizontal line test to show that £{x) = x? has no inverse but that
Flx) = x* does.

Solution, Figure 1.5.4 shows a horizontal line that cuts the graph of v = x* more than

once, s0 f(x} = x*is not invertible. Figure 1.5.5 shows that the graph of y = x is cuf at

most once by any horizontat line, so f(x) = x” is invertible. [Recall from Example 2 that
the inverse of f(x) = x%is [~'() = x3] =

o

L .

Figere 1.5.4

Figore L5.3
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Figure L5.6

w Example € Explain why the function f that is graphed in Figure 1.5.6 has an inverse,
and find 77(3).

Solurion. The function § has an inverse since its graph passes the horizontal line test.

To evaluate £71(3), we view /' (3) as that number x for which f(x) = 3. From the graph
wesée that F{2) =350 f7(3)=2. <

¥ INCREASING OR DECREASING FUNCTIONS ARE INVERTIBLE

Flgura 155

is an example of andncreatitg funéfion,

S D —

R

g

a decreasing func-

e

]
s f ]

The points (e, ¥ and (b, o) |
+ are reflections about y = x.

Figure LEE

Fipure 1.5.9

A function whose graph is always rising as it is traversed from left to right is said to be an
increasing function, and a function whose graph is always falling as it is raversed from -
left to right is said to be a decreasing function. If x; and x, are points in the domain of & |
function f, then f is incressing if

i Flx) < flx)

and § is decreasing if

whenever x; < Xz

flxiy > fixg)y whenever x; < 1y

(Figure 1.5.7). 1tis evident geometrically that increasing and decreasing functions pass the -
horizontal line test and hence are invertible.

- &y
increasing Decreasing
sl T~
™
! ' Y
/ [ fix3) S| ™,
A N
£ { | A
7o) § . | SR
J‘CS )»"2 1 .3.‘} JC-2

D fg) < flayifx <y | flr) > flg ity <y |

Figure 1.5.7

& GRAPHS OF INVERSE FUNCTIONRS
Our next objective is to explore the relationship between the graphs of f and £, For this
nurpose, it will be desirable to use x as the independent variable for both functions so we
can compare the graphs of y = f(x) and vy = f = (x).

If (a,B) is 2 point on the graph y = f(x), then b = fia). This is equivalent to the:
statement that ¢ = f ' (b), which means that (b, a) is a point on the graph of y = f (%
In short, reversing the coordinates of a point on the graph of f produces a point on the graph
of f~*, Similarty, reversing the cocrdinates of 2 point on the graph of £~ produces a paint;
on the graph of f {verify). However, the gecmetric effect of reversing the coordinates ot
a point is o reflect that point about the line ¥ = x (Figure 1.5.8), and hence the graphs
¥y = Flx)and y = F~(x) are reflections of one another sbout this ine (Figure 1.3.9).
summary, we have the following result.

.55 TeeoreEM. If f has aninverse, then the graphs of y = f(x) ond y = Foie
i ave reflections of one another abowt the fine v = x; that is, each graph is the mirmo”
{image of the other with respect to that line.
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b Example 7 Figure 1.5.10 shows the graphs of the inverse functions discussed in
Examples 2 and 4. <«

=
poyEa PR ¥ 5 1y S YTX b Y | : ,y=3
e =xs s = ixiedy &
- i yEoEtEr S
;f // ’/”Jrr ; i //.«*"‘ ’f #f; . o
/ o - [ ¢ ,,.»'“’/ } )
fol : ) i S Fy= -2
. L x ﬁ/
,.-f’"% ffdf//i ,-f(
o // ‘;f // f § i
e // :// o W
e }f 412,./ : e i
- p7 —
- # ~
Figare 1.5.10
& RESTRICTIMNG DORMAINS FOR INVERTIBILITY

5

If a function g is obtained from a function f by placing reswictions on the domain of f,
then g is called a restriction of . Thus, for example, the function

0
is a restriction of the function fix) = x?. More precisely, it is called the restriction of x°
to the interval [0, +-e).

Sometimes it is possible 1o create an invertible function from a function that is not
invertible by restricting the domain appropriately, For example, we showed earlier that
Fix) = x* is not invertible. However, consider the restricted functions

. 2
Hlxh =7,

the anior of whose graphs is the complete graph of fix) = x* (Figure 1.5.11). These
restricted functions are each one-to-one (hence invertible), since their graphs pass the hor-
izontal line test. As iHustrated in Figure 1.5.12, their inverses are

Fro=VE and f0 = R

gy =x x>z

220 ad FHxy=x%, x<9

vyt rgo

Figure 1.5.11 Figore 1.5.12

IMVERSE TRECOMOMETRIC FUNCTIONS _
A common. problem in trigonometry is to find an angle & using a known value of sin x,
€08 x, or some other rigonometric function. Recall that problems of this type involve the
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computation of “arc functions™ such as arcsin x, arccos x, and so forth, We will conciude

this section by studying these arc functions from the viewpoint of general inverse functions.

f/_\ The six basic trigonometric functions do not have inverses because their graphs vepeat
pe

ff you have trouble visualizing the cor-
respondence between the tap 2nd ot
tom peris-of Figire "1.5.13, keep.in
mind that 2 reflecdion abouf ¥ = x
converts veriical fines into horizomtal
finas, and vice warsa,.and converts x-

intercepts fintg pintercepts, and vice ’

VEISE,

e PR

riodically and hence do not pass the horizonta! line test. To circumvent this problem
we wili restrict the domains of the trigonometric functions to produce one-to-one functions
and then define the “inverse trigonometric functions™ fo be the mverses of these restricted
funciions. The top part of Figure 1.5.13 shows geometrically how these restrictions are
made for sin x, cos x, tan x, and sec x. and the bottom part of the figare shows the graphs
of the corresponding inverse functions

snlx, cos™'x, tamx, secT'x

falso denoted by arcsin x, arceos X, arclan X, and arcsec x3. Inverses of cot x and escx are
of lesser impsg{m%and will be considered in the exetcises.

_i/f‘ )ﬁ?/ éf.i; o

¥ ; ; 4
43 ¢ a - ;
1 ~ “ 1 ..h‘v.
) //@ JN | ’ i b
A / N ‘ 5 -
NG }
ik S
l
oy
Gsxsr
'y £y
% §
S R
, ’/ , X e
i - 1
éx —%

The following formal definitions summarize the preceding discussion.

e
i 156 purmaTioN. The inverse sine Junctior, dencted hy sin™?. is defined to be the |
: inverse of the restricted sine function ;

sinx, ~a/2<xy<wi2

|

L LET  pEFINITION. The inverse cosine funciion, denoted by cos™, is defined tobe
| the inverse of the restricted cosine function

cosxy, O<x=<m
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1L.5.5 purmerion, The inverse tangent function, denoted by tan™! is defined to be
+ the inverse of the restricted rangent function

i ty tanx, —m/2 <x < af2
The notations sin” ' x, cos™ X, L, . are
reservad  exclusively for the inverse
wigonometric functions: and- are nat
used for raciprocals of the trigonomet- ; - - - - e - .
i functions, Hrwe wanted to express LS9 DEFINITION.'  The inverse secant Junction, denoted by sec™ !, is defined to he
the reciprocel |/ sinx using am expo-  © the inverse of the restricted secant function
; RN :
nant, we would write {sinxy™" ang .
never sin”! x. \ secx, O <y <mwithx # /2

Table 1.5.1 summarizes the basic properiies of the inverse trigonometric functions we
have considered. You should confirm that the domains and ranges listed in this wble are
consistent with the graphs shown in Figure 1.5.13,

Table 1.5.1

FUNCTION DOMAIN RANGE BABIC RELATIONSHIPS

sint FL R zjﬁ(:f;’?;; o :;ﬂj i
e R
S et B ot O it S
see-! {moo, <11 U [1, +os [0, w/2) U (w2, =] seci(gee g=x i Osx<mxe w2

secisec™ ¥y = x IF a2 1

W EVALUATING INVERSE TRIGONOMETRIC FUNCTIONS
¥ A common probiem in trigonometry is to find an angle whose sine is known. For example,
b you might want to find an angle x in radian measure such that

sinx = 1 ()]

VAN
e s , .

fooh L 4\— nyy and, more generally, for a given value of v in the interval — = ¥ = I you might want to
o 1Y PN U A e equation

Rl A ET: ) ;;f,r solve the equatio Sinx =y (7

", /
ey A

Because sin x repeats periodically, this equation has infinitely many solutions for x; how-
ever, if we solve this equation as

r=sin"ty

Figure 1.5.14
then we isolate the specific solution that lies in the interval [—a/2, /2], since this is the
range of the inverse sine. For example, Figure 1.5.14 shows four solutions of Equation

TECHNOLBGY MASTERY (6), namely, —117/6, ~7n/6, 7/6, and 57/6. OF these, /6 is the soiution in the interval

(=/2, 70/2, 50 sin” (1) = /6 (8)

Refer to the documentation for your
caleulating utifity to determine how to
calausfate inverse sines, inverse cosines,
and inverse tangents; and then confimm

Equation (B} numerically by showing ; ) ) . .
that There is no universal agreement on the definition of sec! %, and some mathemasicians prefer to restriet the

$in~ (0.5 §23558775508 domain of secx sothat 9 < x < #/2 or =& < 3r/2 which was the definition used in some sarlier editions
N ) B2 e . ) o . - .
65 N O'j p of this text. Each definition has advantages and disadvaniages, but we will use the current definition to conform
Y with the conventions used by the CAS programs Mathematica, Maple, and Derive.
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w& QUICK CHECK EXERCISES 1.5

(See page 65 for answers.)

1, In each part, determine whether tie funetion f is one-to-
one.
(a) fi2) is the number of peoplﬁ in line at a movie theater
at time £
(5) fix3is the measured high temperaure {rounded to the
nearest °F) in a city on the xth day of the year.
(©) f{v)is the weight of v cubic inches of lead.

A student enters 2 number on a calcutator, doubles it, adds 8

\o the result, divides the sum by 2, subtracts 3 from the que-

tient, and then cubes the difference. If the resulting nnmber
i x, then ... was the student’s original mumber.

@‘i (3, —72) is a point on the graph of an odd invertible func-
fion f, then and are points on the graph
of £71.

EXERCISE SET 1.5 Graphing Usility

% In each part, determine the exact value without nsing 2 cal-
ulating utility.
(2) sm“’( 1) = e
TR ) I —
(¢) sin™t (% f}-—
(@ cos™ () =
() sec™H{~2) =
! In cach part, determine the exact value without using a cal-
Y culating atility,
(a) sin” ' (sin/7) =
(b sin™ (sin 5/7) = e
(o) tanF (tan 135/ 6) ==
(d) cos™Hcos Ln/T) =

\ yin{a)-{d), determine whether { ané g are inverse functions.
Fa) fl = da, glx =4
) f(;x)~3»+l g(x)m3x—1

(¢} flx)= «/)« -2, g(l} =52

(@ foo =zt glx) = ¢x
3. Check your answers to Exercise | with a graphing utility by
determining whether the graphs of f and g are refiections
of one another about the line y = x.

3, Ineach part, nse the horizontal e test to determine whether

the function [ is ene-fo-one.
(a) flx)=3x+2
© flx) =izl @) flx)=x
(&) flx)=x?~2x42 {f) flxr=sinx

4. In each part, generate the graph of the function Jowith 2
graphing uuhty, and determine whether f is one-to-one.
{a) fix)=x So3x 42 () flx) =2 3% 43k - 1

() flx)=~x—1

| 5. In each part, determine whether the function f defined
by the table is one-to-one.

!

|

z

i @) z%3=i4 s 16|

1 ot —

| 4\0 P2 3" ;
l @ 203 415 6]|

f 716 -3%1 | |
l i

| 6. Aface of 1 broken clock lies in the xy-plane with the cen-
ter of the clock at the origin and 3:00 in the direction of

\

|

\ the positive x-axis. When the ciock broke, the tip of the

i honr hand stopped on the graph of ¥ = f{x), where f is
a function that satisfies {0} = 0. ]

| () Are there any times of the day that cannot appear in
| such a configuration? Explain.

! by How does your answer to part (a) change if f rmuost
i be an invertible function?

i {c) How do your answers 10 parts (a) and (b) change if
31 it was the tip of the minute hand that stopped on the |
| graph of f7

W) The acconpanying figure shows the graph of g func-
tion [ over its domatn —8 £ x < & Explain whv
! has an inverse, and use the graph to find F1(2),

FrH=1), and NG

(b Find the domain and range of /7.

5
|
1
! (¢) Sketch the graph of £,

BT -Ge5eded-2-1 0 1 23 45678 1
Figure £x-7 !

8. (a) Bxpiain why the function f graphed in the acyompa*”; :
nying fignre has no inverse function on its domain i
—3=zx<d H

th} Subdivide the domain into three adjacent intervalson [
each of which the function £ has an inverse.

FigareBx-8 - 5:"'




b oy =3x% -5 12, f(x) = Y45 TT
3, flxi= Iy~ 1
4 flo=5/+1), x=0
L flry=3at 2 <0 M-ﬂﬂ”ﬁi:x;g
. 33 wx, x =2
2 fw =40 ao

18. Find a formulz for p~'(x), given that

plxy=x" = 3% +3x -1

' E9~23 Find a formula for £-1(x), a&g%ﬁ%wmﬂ
| the-funetion=r=1,

“i’?b
'l
b4

/ﬁ“e{m S — — S SRS
Wi =6 +24 x20
MW fry=x+3 2t flx)y = =3~ 2x

22, Fflry =3x% 4 5x ~ 2,
2 flx) = x - 51}

x>0

x>

[ 24. The formula F = 2C -+ 32, where € > ~273.15 ex-
} presses the Fahrenheli temperature F as 2 function of
] the Celsius temperature C.
- J {2} Find a formula for the inverse function,
{b} In words, what does the inverse function t2]] vou?
] (e} Find the domain and range of the inverse function.
i

5

as a function of the same length x in miles.

{b) Find a formula for the inverse of f-

(¢) Describe what the formufax = 7~1(y} tells you in
practcal terms,

Lot fix) = 6% x> 1 and g(x) =
&) Show that flg(xh) =x, x > 1, and g(flx)) = x,
x> 1,
{b) Show that f and g are not inverses by showing that
the graphs of y = f(x}and y = g{x} are not reflec-
tions of one another about y = x.
(©) Do parts {a) and (b) contradict one another? Ex-

plain.
&3:7; dh Show thae f(x) = (3~ x)/{] — x) is its own in-
verse,

(b} What does the resul in part (a) telt you about the

L_M graph of /7

(@) One meter is about 6.214 x 107 miles. Find a for- |
mula y = f(x) that expresses a length y in meters |

|

- Let f{x) = ax® 4 bx + ¢, a > 0. Find Ft
of f isresticted to
{a) x = —~b/(2a) (b} x < ~&/{2a).

28. Let fxy = 2% 4 5x + 3. Find x if 7 (x) = 1.

if the domain

3
3. Let f(x) = ['1nux1ff M) = 2.
3%, Prove that if ¢ + bc # 0, then the graph of
Loax b
- fxy =
oX -~ a

is symmetric abou! the fine y = x,
32 (a) Prove: Xf f and g are one-1o-one, then so is the compo-
sition fog.

{b) Prove: If § and g are one-to-one, then
(fog) ' =gty

. Skeich the graph of a function that is ong-fo-one on
{0, +o0), yet notincreasing on { -, o0} and not decreas-
Ing on (~owo, o).

3. Prove: A oue-1o-one function f cannot have two different
-« inverses,

fiven that 0 = tan™' {2), find the exact vaiues 03‘ si

! cosé) cotd, sech, and csch. 4?21 (j k

36. Given that 8 =gec™ 2.6, find the exact valées of sing,
cosé, tan &, cotd, and csed,

37. For which values of x is # true that
{4y cos '{cosx) = x {h) cos{eos™?
(<) tan“*(tanx) =x {d) tan{tan™!

xX)=x
\-—-.U

33“3'@ Find the exact value of the given quantity. E

38. sec[sin™* {~3j]

39. sin[2 ces“"‘ (3]

fﬂ@«&? Complete the 1dentmes using the iriangle method
(Favure 1.5.45). |

(b tan(cos™ x) =7
(@) sin{tan™tx) =9

46, (8} sinfeos ! x) =7
(c) cseftan™ x) =%
41, (a) cos{tan~'x) =7 (b} tan(cos™' x) =7
{c) sin{sec™'x) =7 (d) cotfsec™!x) =7
42. (a) Use a caleulating utility set to radian measure to make
tables of values of y =sin™'x and y = cos™' x for
=1 -08 ~06,...,6, 02 ...,1. Round your
answers © two decimal places.
Plot the points cbigined in parl (8}, and use the poin{s to
sketch the graphs of v = sin ™ x and y = cos™! x. Con-
firmthat your sketches agree with those in qum 513,
Use vour graphing utility to graph y = sin"F x and
¥ == cos™! x; confirm that the graphs agree with those
in Figure 1.5.13.

{b)
(c}

. 43, In each part, sketch the graph and check your work with a
graphing utility,

{2} y =sin~' 2x b y=tan!

EX
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. The law of cosines states that

36.

{ay the maximum number of daylight hours at Fairbanks o
one decimal place

(b the minimum number of daylight hours at Fairbanks to
one decimal place.

Soperge: This problem was adapted from TEAM, A Path to Applicd Mathematics,
The Mathematical Asgociation of Americs, Washington, D.C., 1985,

o? = a® 4 B - 2abcoosd

where a, b, and ¢ are the lengths of the sides of a wiangle and
4 is the angle Tormed by sides a and &, Find 8, 10 the nearest
degree, for the triangle withe = 2, b = 3, and ¢ = 4,

. An airplane is flying at a constant height of 3000 ft above

water at 4 speed of 400 {1/s. The pilot is to release a sur
vival package so that it lands in the water a1 a sighted point
P 1 wir resistance is neglected, then the package will foi-
low a parabolic trajectory whose equation relative {o the
coardinate syster in the accompanying figure is

_ g 2
¥y = 3000 Zuix
where g is the acceleration due (o gravity and v is the speed
of the airplane. Using g == 32 ft/s%, Bind the “line of sight”
angle @, to the nearest degree, that will result in the package
hitting the target point.

AY

Parabolic

P trajectory
~. B of object
™~ ",

. e N
Ling of sight ™~y »
Fal Figure Ex-55

R
|
i

A camera is positioned x fes( from the base of a missile
launching pad (see the accompanying fgure). If a missite
of length a feet is launched vertically, show that when the

¥ quick cHecK AnswERS 1.5

%LM \

37,

58.

38,

1)

61

62,

.
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base of the missiie is & feet sbove the camers lens, the angle
8 subtended at the lens by the missile is

i X |
Camera Latmehpad  Figure Fx.56
Prove:
(a) sin™ (—x) = —sin"t x
{b) tan " Y—g) = —tan~" x.
Prove:

{a) cos™H—x) =y —cos™ x

(b)) see™ (—x) =~ sec™! x.

Prove:

(a) sin™' % = tan™! (x] < 1}

x

V1-xt

. ox
V1 —x?

by
{by cos™tx = 5 tan~ (x! < 1)

Prove:

- . il x+y
tan ix+tan [ymtan ‘(_w = )
L xy

provided —/2 < tan™'x + tan~' vy < #/2. {Hinr: Usean
identity for tande + 8.1
Use the result in Exercise 6{ to show that
{(a) tan™ —;: + tan ™ ; = /4
by 2tan™ 1+ an~! § = 7/4,

Use identities (9) and (12) to obtain identity (16}

L ¢a) not one-to-ome (b not one-fo-one (¢} one-to-one
@y /3 (e) 2n/3 5 (&) =/7 ) 2n/7 (o) w/6 () 2T

Hx -1

3(=2,3% 2,-3) 4 {a) —x/200) 7/4 (¢} 7/3

1.6 EYPONENTIAL AND LOGARITHMIC FUNCTIONS

When logarithms were introduced in the severnieenth century as a compuational tool, they
previded scientists of that period computing power that was previously unimaginable,
Although compuiters and caleulators have replaced logarithm bles for numerical
caleulations, the logarithmic funciions have wide-ranging applicutions in mathemarics
and science. In this section we will review some properties of expenents and logarithms
and then use our work on inverse functions to develop results about exponential and

logarithmic functions.
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1.6 Exponentiel and Logasithmic Functions &7

¥ = b* about the y-axis. This is because replacing x by —x in the equation y = p* yields

Yo b-*.i: - {1/1?}-1.’
The figure also conveys that for & - 3

» the larger the basz, the more rapidly the function
Flxy = b ncreases for x = 0.

yeb y=5b" we IV Y .
B<haty Ly > 1) (%)ft (‘5) (19) T-Y W 3T 2k
.\ ; Y ‘t
r\x / g k 5
5!\ _‘r'yj ’ -y F
V4 Sy
w_n_w.___m:;‘g{im_mm__mm_ y= ¥ | i 4
"‘-..w_ th=i /’/“fﬁ:” B
..-»--'“"“""/M e, o, X ) W...—-—f“‘f,,-ﬂx i y
\ e !

-2 -1

Figure 16,1 Figure 1.62 The family

y=5%h = ()

If o> 0, then 7 (x) = b" is defined and has a real value for every real value of X, 80
the natural domain of every exponential function is (—w, 4}, 5 > 0 and b # 1, then

as noted earlier the graph of y == b* jncreases indefiniiely as it is traversed in one direction

and decreases toward zero but never reaches zere as it is traversed in the other direction,

This implies that the range of f(x) = & is {0, +oo))”

b Example 1 Sketch the graph of the function f(x)

=1—2% and find its domain and
range.

Solution.  Start with a graph of y = 2", Reflect this graph across the y-axjs to obtain
the graph of y = —2%, then transiate that graph upward by 1 unit to obtain the graph of
y=1-2% (Figure 1.6.3). The dashed line in the thir

d part of Figure 1.6.3 is a horizontal
asymptote for the graph. You should be able o seo from the graph that the domain of Iis
{mae, 4o} and the range is {—eoo, 1y, <

¥ 2t

e
¥
H -
g
it

¥
S

Yy = =0

Figure 1.6.3

The-use. c_f"ihe tetter, eisin honorof
the Swiss mathematician Leonhard Eiw

ke tbiography an p. 3) who s erecited
' mattiematical inv-.

with tacognizing th
p_bjrtancé_af{!his constant.

# THE NATURAL EXPONENTIAL FUNCTION

Among all possible bases for exponential functions
a special role in calculus. That base, denoted by the
whose value to six decimal places is

there is one particular base that plays
letter ¢, 18 a cestain irrational number

e = 2718282 (2)

“We are assuming without proof that the graph of y = &' iy 4 corve withouot breaks, gaps, or holes,
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by R e This base is important in calculus because, as we will prove later, b = e is the only base
/ for which the slope of the tangent line to the curve y == &% at any point P oon the curve is .
i Slope =1 equal to the y-coordinate at P, Thus, for example, the tngent [ine 10 ¥ = ¢* at {0, 1) has
2 slope 1 (Figure 1.6.4),
A The function f(x) = ¢* is cailed the natural exponential function. Since the mumber eis

. .
*Mw«';""f i »  between 2 and 3, the graph of y = ¢* fits between the graphs of y = 2¥and v = 3 asshown
/ i in Figure 1.6.5. To simplify typography, the natural exponensial function is sometimes
written as exp{x) in which case the relationship g¥1+ = o7 " would be expressed as
Figure 1.6.4 The tangent Hine to the explx; +xp) = exp{x}}exp{xz)

graph of ¥ = ¢ at (0, 1) has stope 1.

Your technology utility shouid have keys or commands for approximating e and for graphing the
natural exponential function. Read your documentation on how to do this and use your ulility io
confirm: (2) and to generate the graphs in Figure 1.6.5. ‘

TECHNOLOGY |
MASTERY |

¥ /)j =g . .
¥ The consint ¢ alse arises in the ¢ f the equation
y= 3“”%: 2% .
o )
M . As shown in Figure 1.6.6, y =¢is a yaiptote of this graph. As a result, the
e > value of e can be approximated to any degrée ol hecuracy by evaluating {3) for x sufficiently
larpe in absotute value {Table 1.6.2). 'y

\) Xg/ Table 1.6.2

\ﬁ’\ {E@ APPROXTMATIONS OF ¢ BY (14 Lixy'
U \é{\ FOR INCREASING VALUES OF x

- W

Figure 16,3

SN v, el (el
g ‘

2 Pl ] ) 2 ~ 2500000
‘N ,fj o= (e ly % 10 1.1 2.593742
\/ e ‘ 100 1,01 2704814
= W*M‘_—--"-'w-—m----'--t - 1000 1.063 2.716924

3 10.000 1.0001 2.718146

‘ . 100,000 100003 2718268

T T Ty o | A B 1000000 1000001 2.718280

Figure 1.6.6

B LOGARITHRMIC FUNCTIONS ;
Recall from algebra that a logarithm is an exponent. More precisely, if b > 0 and b # 1
then for a positive value of x the expression

log, x

(read “the logarithm to the base b of x”") denotes that exponent o which b must be raise
to produce x. Thus, for example,

Logarithms with base 10 are cafied
common logarithms and are oiten log,y 100 = 2. log,o(1/1000) = ~3, logy 16 =4, log, 1 =0, logb=1
wrritten without explicit reference to the . .
base. Thus, the symbol log x generally
denotes logyp x.

;T.bﬂ

We call the function f(x) = log, x the logarithmic function with base b.

" The precise definition of a angent lne will be discussed jater, For pow your intuition will suffice.



Y —_ et
J jr= b Py
i /
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I -~
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sk ?f . y = log, x
A7 ot
e
_,./’i’ gl f
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Figure 1.6,7  The functions »° and
log,, v are imverses,

Figure 1.6.8  The family
¥ log e (b > 1)

TECHNOLOGY BASTERY

Use your graphing utility to generate
the graphs af v = Inx and y = HOE

1.6 Exponential and Logarithmic Functiens &9

Logarithmic fanctions can alse be viewed as inverses of exponential functions. To
set why this is so, observe from Figure 1.6.1 that if b > 0 and & 7 1, then the graph of
Slx) == b* passes the horizomal line test, 50 #* has an inverse. We can find 3 formula for
this inverse with x as the independent variable by solving the equation

x=p
for y as a function of x. But this equation states that v is the logarithm te the hase b of x,
S0 L can ¥ Titt
s0 1k can be rewnitien as e 10‘5;, ¥

Thus, we have established the following result.

L6l THEOREM. b >0andb $# 1, then b* and log, x are inverse functions.

[t follows from this theorem that the graphs of y == b* and y = iog, x are refiections of
one another about the line y == x (see Figure 1.6.7 for the case where b > ). Figure 1.6.8
shows the graphs of y = log, x for various values of & Observe that they all pass through
the point (1, 0}

The most important logarithms in applications are those with base ¢. These age called
natural logarithms because the function log, x is the inverse of the natural exponeatial
function e, It is standard to denote the natural logarithm of x by Inx (read “ell en of x™),
rather than log, x. For exampie,

Ini=0, Ine =1, mtfe=—1, Ine*)y=2

[Sinced® =1  [Sincee' me ! | Since et el | Sinced® =g .

d

In general, Cy=lnx ifandonly if i = e

As shown in Table 1.6.3, the inverse relationship between b* and log, x produces a
correspondence between some basic properties of those functions.

Table L.6.3
CORRESPONDENCE BETWEEN PROPERTIES OF
LOGARITHMIC AND EXPONENTIAL FUNCTRINS

PROPERTY GF b* PROPERTY OF log, x
B log, 1=0
bl= b log, b = 1
Range is (0, 4ee) Domain is (0, +e0)
Domain 18 {00, 4e2) Range is {~o0, o)

Jt aiso follows from the cancellation properties of inverse fimctions {see (3) in Section
1.5} that

)

5
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1n words, the functions * and log, cancet out the effect of one another when composed
in either order; for example,
log 10° = . 0oL = x, Ilne’ =X, M=y, e =3, LRIy

B SOLVING EQUATIONS SNVOLVING EXPONENTIALS AND LOGARITHMS
You should be familiar with the following properties of logarithns from your eartier studies.

ot

1.6.2 THEOREM (Algebraic Properties af Logarithms). if &> 0.6# 1,80
o> 0, and r is any real number, then: '

{e) 103?;?{“0) = logpd +leg,c Product property
; ) ]C‘giy(a’/f:) = log,a — log, ¢ Quotient propeity
{e) §€3gb(a"} = riog,a Power property

(@) tog,(1/6) = ~10gye Resiprocl progers

" ; — These propetties are often nsed to expand a single logasithm into sums, differences, and’
Expiessions of the form log, Ui+ vy multiples of other logarithms and, conversely, 1o condense sums, differences, and multiples,

ard log,tu — v} have no psebd simof Joaarithms into a single logarithm. For example,
pitfications. In particular,
5
14 N e 10e Sotne T x ] ) <
log, (4 -+ LJ:.?« 30@@} v \‘?&b(l) }Ug "'-)—jf-:‘ — IDgX}‘) . 10% \/‘E — 10gx - 10g }J‘_‘r . longIZ - logx + g }og y - % 1022
L togalu — vy 2 logy  — logslyd Ve
' ) ‘ o 323

S}ogz«-%»logﬁs~—]og8:10g32—:—1033w10g8w10g =log 12

x4+ 3)
x?—1
The inverse relatonship between logarithmic and exponential functions provides vy
following useful result for solving equations involving natural exponentials and ipgarithnns:

Yinx —In(e? ~ [+ 2100 +3) =l —In{x? = D+ In(x+3) =1n

An equation of the form log, x =k canbe solved for x by rewriting it in the exponenﬁ?
form x = bt, and an eguation of the form b* =k can be solved by rewsiting it in
Jogarithm form x = 10g; k. Alwernatively, the equation ¥ = k can be solved by taking a
Togarithm of both sides (but usually log orln) and applying part (¢} of Theorem 1.6.2. Thes
‘deas are illustrated in the following example. :

» Example 2 Find x such that
(@) fogx =2 O InG+1H=3 (€5 =1
Solution (@), Converting the equation to exponential form yields
© = 107 % 25.95
Spiution (b). Converting the equaticn 10 exponential form yields

x-—‘:—l:es oy x = ¢ — § %@ 147.41
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Solufion (€} Taking the natural jo garitht of both sides and using the power property of
logarithims yields In7

LsInS5=1In7 o X omo— 2 2] @
ins

w Example 3 A satellite that requires 7 watts of power fo operate at full capacity is
equipped with a radioisctope power supply whose power output P in watts is given by the
equation TP = 75pm12S

where 1 is the time in days that the supply is used. How long can the sasellite operate at ful}
capacity? .
Sofmtion.  The power P will fall to 7 Wity when
7 - ?5€—i,f‘]25

The solution for ¢ is as follows:

VT e @i 123

In(7/75) = m(e~/125

In7/75) = ~1/125

t=-125In(7/75) =~ 296.4
so the satellite can operate ar full capacity for about 296 days. «

Here is a more complicated example,

e e}. — ewx
- == 1 for x,

Solution. Multipiving both sides of the given equation by 2 yields
e"{ — e»i‘ = 2
or equivalently,

et — ;1: = 2
Multiplying through by ¢ yields
. & —1=2 o &~ 2" - 1=0
This is really 2 quadratic equation in disguise, as can be seen by rewriting it in the form
(&)Y —2e 1 = ¢y
and letting & = ¢* to obtain
=2 -1 =0
Solving for i by the guadratic formula vields

2EVAEE 248
H o= e =

=132
2 2
or, since 1 = ¢%,
e =1442
But e* cannot be negative, so we discard the negative value § — -ﬁ; thus,
& = 1N D

ne® =in(l++2)
=0l ++/2) 2088 «




Table 1.6.5
T 272 0.00
"2 7.30 0.69
I3 20,08 116
4 54.60 1.3y

5 148.4] 141
16 403.43 1.79
7 1006.63 195 |-
N 208006 | 208

% 0 BI0308 230

10 19202647 2.30
V100 T 2689 % 109 T 4] N

- [oog L97 % 10%7 1691

i
Ve
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produced 2 sound level of 92 dB. What is the ratio of the sound intensity of The Who 1o the
sound intensity of a jackhammer?

Solution. Vet [; and 8, (= 120 dB} denote the intensity and sound level of The Who,
and let /5 and f (= 92 dB) dencte the intensity and sound level of the jackhammer. Then

Il = (L 1g) i1/ 1)

log(1/ L) = log(J, /1) — Yog( 1/ Iy)
Wlog(h/B) = 10log(1y/ 1y) — 10log(ls/ Iy}
I0tag(li/ ) = B, ~ By = 120 — 92 = 28
log(Ii/1) =2.8

Thus, 11/1; = 10%% 2 631, which telis ns that the sound mtensity of The Who was 630
times gregter than a jackhammer! « :

¢ EAPONENTIAL AND LOGARITHMIC GROWTH

The growth patterns of ¢* and In x illustrated in Table L.6.5 are worth noting. Both functions
increase ag x increases, but they increase in dramatically different ways—the value of e
increases extremely rapidly and that of In x increases extremely slowly. For example, at
¥ =10 the value of e is over 22,000, but at x = 180G the value of Inx has not even
reached 7.

A function f is said to increase without bound as x increases if the values of fix)
eventually exceed any specified positive number M {no matter how large} as x increases
indefinitely. Table 1.6.5 strongly suggests that f{x) = ¢* increases without bound, which
13 consistent with the fact that the range of this function is (0, -+e0). Indeed, if we choose
any positive nuimber A, then we will have @ = M when x = In M. and since the valyes
of e” jncrease as x increases, we will have

> M i x>inM

(Figare 1.6.9). It is not clear from Table 1.6.5 whether In ¥ increases without beund as x
increases because the values grow so stowly, but we know this to be 5o since the range of
this function is {—co, +w). To see this algebrajcally, let M be any positive number, We will
have lnx = M when x = ¢, and since the values of 1 x increase as ¥ increases, we will

have . M

me=>=M if x>e

{Figure 1.6.14),

y=M

L —

Higare 1.6.9  The value of v = ¢° wil)
exceed an arbitrary positive value of 44
when v > la M.

Figure 1610  The valne of y=lny
will exceed an arbitrary positive value
of M when x > ¥,
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%f@ﬂﬂﬁ{ CHECK EXERCISES 1.6 (Seepage 76 for answers.)

@The function ¥ = é}t has domain —.— .. and range olve each equation for x.
, (a) e =3 {by 10% = 1,000,000
@The funotion y = {1 — x}has dornain andrange (g) e =56
S e olve each equation for £
?‘ﬁxpress as & power of 4 (37 ne =3 () logls = 1) =
a) 1 {b) 2 (©) _;_6_ (d) NZ) (8) 3. (&) Zlogx — logix + 1) == log 4 — log3
: i 7
£XERCISE SET 1.6 Graphing Utitity RS A Lo
P ik Simpiify the expression w1thom using 2 calc,ulaung 't?sw-w Rewme: thc expression 48 asmgie togarithm.
P ety 5 ey i T S
e @ 410g2 log’leoglﬁ
i (a) Bm by (— 3)2“ (c) 877 14, 4 Logx — 310g(s;112.x) +2

Lo 2 oy 4 () 9% 15, 2imix+ 1)+ binx - Infeos:)

P e e it it A o R S S e

P Eg Usea ca}ouiatmg ut;lny o apprommate ihﬂ e:\plesslon " 16-25 Solve forx th‘nout asing a calcelating ,‘mm},‘

: Round your snswer to four decimal places. SR — I .
LPR— - A p i e g S e A P e p s i AR g T IR 16- 1{)g]{j{l _+_ x} — ’%

- {17, log, (V3 ) = —1
3. (a} ’?‘ a1 (b} 5‘“ 5 ! “@ (V)
4 (&) \/”?4 (b} Y% i8. In{x") = N2 mfi/xy= -2
it NS 20 g3 =T . @ logs () = 8
5--% Fmd Lhe exact vz}ut: of the e:"xprcssmn w:thom using a 32, logy %+ logygx = 20

calculating utxhty 23. Togyg M logggAF =5

@) Toga16 24, tndx - 3ln(e?) = in2
(c) tou, 4 (d iog@ 2:.. (/) +1n(1x3) =1In3

6. () log,(0.00L (b) log 50(104) 26 31 bolvemrx without using a calculating Wwility. Use
{c) 13{53) {d) ln(f ) thc; namra] ‘aogantbm anywhere that Jogarithms are needed.

ks e e e e e oA R R R .

'fmg Use acalcu}atmw ut:lﬁy t0 dppmxrmate LhL expression. 26 3F =2 27/ 5% =3
Raund your answer o four dec;mal nlaces. : 28, Y =5 ~g.17 e.’ﬂx =7

'7 (a og232 {b} n0.74 3(} e' —er _,,0

3 fa) ’mg(x 3 ) dow | 3130 Rewrite the given equamm as a quadratic equation
{ | in w, where i = g% then s{)}ve for x.

@wws Use the 'locauthm properues in Theo:em 162 w0 ! R
i tewrite the expression inteyms of 7, 5, and 1, where r = Ina. | 32_ e?.x L . 33 o - 33“” — ,,_2
;‘a_nbandr-.lnc :

by In b
T g

st

ke oA A

|
! 5 3436 Sketch the graph of the equation without using ¢
(b) In4/ Mbs i graphing utility.
=3 [
\f o |

L 3d, fa) vaes ] A Imfe =7 Ry e d iR

&/ QUICK CHECK ANSWERS 1.6

1. (o, +o0); {0, +cr‘) 3. (om, 13 (—0, 400} 3. (a) 4 vy 477 (c) 477 {a) A (@) gloss 4 (@) ot =2 ()7
{© 2 5. (a e oy 101 {e) 2

1.7 MATHEMATICAL MODELS




1.8 Exponential and Logarithmic Funclions 75

35 39 Umph the functions on the same sereen of a graphing

47. I equipment in the satellite of Example 3 requires 15 watts

o ‘ . b ied1 o operats correctly, what is the operational lifefizae of the

L atility. {Use the change of base fi mra?:"x a (8), where need powcr supply?

. " fThe equation Q = 12¢7%9%% gives the mass Q in grams of
¥ 38 Inx, ¢, logx, 0 .’ Fadioactive potassium-42 that will temain from some initial
£2 39, logzx, Inx, logs .t log x quantity after r hours of radicactive decay.

) 40, {2) Derive the general change of base Tormula {a) How many grams were there initially?
log' . (h} How many grams remain after 4 hours? .
log, ¥ = —&. ¢y How long will it take w reduce the amount of radioac-
log, "“?-m\ tive potassinm-42 to balf of the initial smount?
{b) Use the result in par (a) to find the exact value of @h& acidity of a substance is measwred by its pH vaiue,.
" (log, 81)(log, 32) without using a calculating urility. which is defined by the formula s \ }m}?
m 2 41, Ysea graphing utifity to estimate the two points of intersec- pH = —log{H] Q&f\%mﬁ %
‘ iop of the graphs of y == 1.3% and y = log, 3 x. where the symbol [H*] denotes the concentration of hydro-
42. The United States public debt D, in billions of doflars, has gen jons measwred in moles per fter, Distilled water has a
been modeled as [ = 0.051517(1.1306727)", where x is pH of 7; a substance is called acidic if it has pH < 7 and
the numzber of years since 1900, Based on this model, whexn basic if ithas pH > 7. Find the pH of each of the following
did the debt first reach one trillion dollars? substances and state whether it is acidic or basic.
i SUBSTANCE [+
F1T 43, (a) Tsthe curve in the accompanying figure the graph of i {a}  Arterial blood  3.9% 1078 mol/L
g an exponential function? Explain your reasoning. | (by Tomatoey 6.3 % 107 mol/L
{b) Find the equation of an exponentizl function that () Mik 4.0% 1077 mol/L
passes through the point (4, 2). {d)  Coffee 1.2 % 1075 mol/L
(c) Find the equation of an expoaentiai function that
passes through the point (2, 1}. N . , L
i_ (d) Use a graphing utility o generate the graph of an | JHse %he deﬁfntzcm of pH in Exercise 49 to find [H 1] in a
i exponential function that passes through the point = solution having a pH equal to _
"""" i (2.5). (a) 2.44 (b) 8.06.
@ ; ’ : 51. The perceived loudness # of a sound in decibels (dB) is re-
‘ i lated o its intensity / in watts per square meter (W/m"} by -

- | ; the equation

' 8 = 10log{i/Iy)

where I = 1072 W/m?. Damage to the average ear occurs
/ x i at 90 dB or greater. Find the decibel level of each of the
...... - o Figuye Ex-43 | following sounds and state whether it will cause ear dama ge.
wm
K aq, (2) Male a conjecture about the general shape of the } SOUND ]
—i graph of y == log(log x), and sketch the graph of | _
ES s equation and y = log ¥ in the same coordinate : {a)  Jetaircraft {from 50 £ty 1.0 % 102 Wim?
= i systern, ; (b}  Amplified rock music 1.6 Wrm®
— B | {b) Check your work in part (2) with a graphing utiIity. \ (¢} Garbage disposal 1.0 % 107 Wi?
| 45. Find the falacy in the following “proof” that § > 1, | (d)y TV (mid volume from 10ft) 3.2 x 107 W/m*
# ‘ Multiply both sides of the inequality 3 > 2 by | mg fw J‘
..... gt 3log i 3 > 2log »2. , 52-54 Use the definition of the decibel leve] of a sound (see |
log (%)3 - log (%} ; Exercise 51).
fog él? = log é’ E 52. If one sound is three fimes as intense as another, how much
j o1 [ greater is ifs decibel level?

o ] o8 ] 33. According to one source, the noise inside a moving automc-
1(8) B bile is about 70 dB, whereas an electric blender generates 93
four 6. Prove the four algebraic properties of logarithms in Theo- dB. Find the ratio of the intensity of the ﬂoi,se of the blender

rem 1.6.2, to that of the automebile.

thod's all @ kS




S gxercise et 1.1 (Page 2

{eF Ymax = 28aix = —2.8) Y = 2.2 atx = 1.2
' ayyes (b)yes {(e)no (dyno
(a) 1943 (b} 1960, 4200  (c) no, you need the year's population
(@) war, marketing  {e} news of health risk, social pressure. anti-
ssoking compaigns, increased mxation
(2} 1999, about 343,400 (11985, 537,008 (o) secend vear
() ~% 10 H0 25 2T — 2 i O 4y~ 6 2V FOE = N
i fore > band 3 =Grfore g1
LomaEd B E~vI 2V (@ m4e) @rg0
Cogdr# Rnob g =00kl 42,
@<} (B-2<x<2 (©xz0 @alx {Qalx
. (3)ymo; war, sestilence, flood, sarthquakes () decreases for § hours,
tukes & fmmp upward, and repeats
4 19 (32,4

{b) none
(Chr <2 dxx
(8} Pain = —1; no maximuma
24 Ao L{) —cos8)
L= 2x, x =<0
(an{x)z{i;t.i’ ::g Brpixy=11 Dyl
T 2 -1, xz 1

5 {4} Vo= {8 ~ 2x)(15 ~ 2x)x

i dcx a4

fa] 0 <« ¥V < 90, approximately
AV

wh 2N

2L L ow x+ 2y
{8 L = x 4+ 2000/x
(}0 < x = 100
(Byx =451,y = 224t

Al
@ L 300
250
dy 200
20 150
0
303 ]

{2 3 4

(d} ¥ appears to be maximal
forx = 1.7

s {alr 34,0~ 138 (b)aller

(e)r =2 3.0 cm, b =~ 160 cm, C &2 4,76 comis

Cx=1,-2 (g =x+1allx

- {a) 25°F (b} 13°F (e33°F 35 18°F

T 50 50 105

¥ Tuorcise 5ot 1.2 (Page 24}

fay ~2.9, —2.0,2.35.2.9 () none (e} 0 {(d) -1 75 < x < 215

Lodey 3 (bhfcy 5 [=3,31x[0,5

F § 'E ard
NS

W, B b
% g e g
IBERED EXE
ma-m» % Gemen 4 - Hamen

4§ {5, 141 % [—60, 407
40

i [—0.1, 01 x [-3. 3]

To50
. [-400, 1656] x [~ 1500000, 16000]
16000

a2

1634

-1 500000
15, [—%, 2] = [=30. 201

0
4. {a) FLo) =16~ 52 {b) flx) = ~+/16 5% (e}ne

2t (@ R w4

X
Pz

(&)




A3&  Answers to Odd-Numbered Sxercises

i The grapl of y = [ f(x}] consists of those parts of the graph of y ==
F{x) which lie above the x-axis, togather with the refleciions seross
the x-axis of these parts of the graph of y = f(x)} which e beiow the
Kdxs.

The graph is stretched in the
vertical direction, and reflected
across the xaxis if ¢ <

The graph is translated so
its veriex is on the purabola
4

[EER

B el g (Page 36}
{a} Tf" iy T”

Wi-lxzbh il ys -2 xe 2zl
(@}3 (b9 (32 (2



D LA o B WAV A S ' W LR S o Lﬁ)MT

AR e el {mxdl {mt)c +1
KETR I lx/l-—vc {x‘<.§
H

I 1
" — [ e . -
31, WI—? x#— " zxy-()‘i G Tt

41, @y glx) = /7, My =x +2 (b} g(x) = Ix, Iz(t‘)—-:c —3x 45
& {aiglx) = £, h{x) = gin g By g(x) = 3/x, h(x) = 5 +cosx

45, @ FU =27 gl = [+ siny, hle) = 2
B) Flay = ST glxy =1 —x h{x) = F

4. #7 4,
2t i
: _ = flab)
H] S i X
e L 3 o
o i 3

S1ok1S, 2 B3R Mo+ Bn by £ 3 B e, e
xw  x{x <+
57, f s oneither, g = odd, & = even

59, {a) ¥ b &
x |
X
{e) 4
X

i1 (ateven (odd (cyodd {d)neither
63 (aYeven fblodd (even (d)peither (e)odd (f)even
&7, {a) y-axis 4,
(b} origin
(&) Xoais, y-axis, origin

@y =3x b {0
by =3y +6

y=3r+6
y=3r+2

y=3xr~4

Goda)y = max +2 (¢}

Bk 1A{PAZE ABY o e

Answers to Odd-Numbered Exercises A5

By e —y + 3

G - xgr . :

Vo= e 7 F-INRTCEps Yepresent
\j 9 —xj curreat value of iter

being depreciated.
P>
7. {a}siepei—1 (b} y-interceptiy = ~1
LR R A 5 Lsr o1 ¥
A ¥ ¥ luax -
NEE 1 \\5 4

{¢) pass through (—4, 2}
y=l 3+ a2
¥

P23+ 42
{d} x-intercepix = 1 15 Aay VI

{
L=




B£36  Amswers to Odd-Numbered Exercises

23,

. a0

{a) newton-meters (N} (B 20Nm

3! H i ] i
@F vay | o0as @ o0s oo | 15 L 20

; 80 10% 1 a0x 0% 20% 167 1133 x 107 10 10°]
- H i o J

. () k= 0.000045 Nom? &y AF
() 0.000003 N ‘ 0
£ds The force becomes infinite;
the force iends (0 zero. t
N x
t i 0 :
Ly =lr=-1L2 ®BLhy=0Gx=-3 [IViy=2 -

) v 3ein(x/2) (M y =deosdx (O y = -5Ssindgx
. (#) y = sinfx + {(x/2)] (1;1} v =3+ 3sm{2x/9)

€3]

@Iy =02 = -2

€yy=1 “!“29*.5;[2(::-2

J
33, {233, 2/2 2.2
3 2
f
a 1: 2 0 4
-3 iy
G
0
6
3. () A = \Jal+ 43,8 = N (An/ AD)
(&) x = @ sin(Reer + tan~! 5—&;}
B Susrcise Set 1.5 (Page 62} —
i (@yes {Bino {oves {(dine
k3

. (@yyes (pves (cdmc (dyes (eyno {fino
L {E)yves  (B)no
. (@8 ~1,0 . {x +6)

Lol -ahforx 50 28 0+ ST 2 forx < -4

L@y = (621 x 1074 (M=

. (b) symmetric sbout fhe line y = x 28, 10

) {-2,2], l—%. 8} 1 LITENSYE

(e} 10+ 12
18 /375
i {(5/2) -, x> 12
Coifx. Der<ii2

18, 24 ~2forx = 16

B

(O
; 62147
{¢) how many meters in y miles




41.

43

. 47, {2) 825545, error
. (@) cot ™ )

mbexsr M-~l=x<l {g-m/2 < < nf2

{d) = 2 X < ; %
1 Vi—x2 ) 1
(8) s (B) (@ Y= T —
ST+ x? x x SR
(2} - {b) A
: g/ N 1 R
i X
L5 03 i
4 T o AU
=4 5
2

L (8l x =36064 rad ()8 = 76,77
(B lx] <sini

oot e allx, O<y<w
ese iz L, Balyl < w2
51, {2} 53.0° (B}33.6° ()25.8° 3% (a)21.1bours () 2.9 hours
55, 24°
B yerdiue Set 1.6 (Page 74) .. ‘
Lo~ (4 () 3 @)29690 (00341
5oapd -5 (@i @ 7 @ 13655 (b -0.300

- (&) \6?3’

3 it
.(a32r+%+3 B)ys—3r-i
@) L+ logx 4 dloglx ~3) ()2 xf+3lnsing — §lalx® 4 1)
g L1y
- log B gg mm P, 001 18, 2 34 2 W

CO8.X

n3 . .
LA bl w2

32 127 o
2in5

L

-2

- ZETT, 03174

3 log, x 41, x =~ 1471, 7.857

-3 iog v

43,

s

3 (a)no

1. (a} 140 dB, damage

7. (8} 181.8 an/s/Mly
19, T = 849.5 4 143.5 sin {——z -l

Sy e=xAtl

Answers o Qdd-Numbered Exercises  A37

() y = (/5
) y = 21‘/4
{ehy=27F

iog % < (), 30 3 fog % < 2log i: &7, 207 days

{a) 7.4 basic (b) 4.2, acidic (&) 6.4, acidic (@) 5.9, acidic

(b 120 dB, damage  {¢) 80 dB, ro damage
() 73 dB, 1o darnage

53, A 200 55 (@) 3w 10187 () == 067

et 1.7 (Page 82)

I 3 5 = 0328057 — 430.94, coelficient = 0.3433

250?5

240
23 M ss
zzosz i PR
210}

?/ RN R N
TIYRS 1992 1996 2000 2004

. (a) p = 001467 - 3.98,6.999%  {B)325amm  {oh= —272°C
1@y R =000723T - 155
L () 8 = 0.50178w « 0.00643
. (@) R = 0.2087h — 1.0549, 0,842333

b}y = -214°C

== 1601

5, (a3 3bt 4 2h 4+ 1

B 4R My =x—1/3
03 =

0 i
EAY G

{5. The lincar regression line loins the third point to the midpeint of the

veriical ling segment between the other two points.
B} 1492 » 10" years  {¢} increase

. w1, .
21, = 0,44
T 0,445/d

Exercise Sef 1.5 (Page 93) .
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