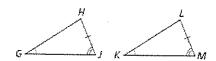
1. U.S. President Harry Truman and British Prime Minister Winston Churchill both wore polka-dot bow ties while in office. A well-tied bow tie resembles two congruent triangles. Complete the following proof:

Given: $\overline{BA} \equiv \overline{BD}$, $\overline{BE} \cong \overline{BC}$


Prove: $\triangle ABE \cong \triangle DBC$

S/A Or HL	Statements	Reasons
	1.	1. Given
	2.	2.
	3.	3. Given
	4.	4.

2. Given: $\angle G \cong \angle K, \angle J \cong \angle M, \overline{HJ} \cong \overline{LM}$

Prove: $\triangle GHJ \cong \triangle KLM$

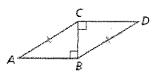
Proof:

S/A Or HL	Statements	Reasons
·	1.	1. Given
	2.	2.
	3.	3. Given
	$4. \ \Delta GHJ \cong \Delta KLM$	4.

3. The Hatfield and McCoy families are feuding over some land. Neither family will be satisfied unless the two triangular fields are exactly the same size. You know that C is the midpoint of each of the intersecting segments. Complete the following proof:

Given: C is the midpoint of \overline{AD} and \overline{BE} .

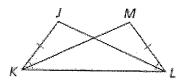
Prove: $\triangle ABC \cong \triangle DEC$


Proof:

S/A Or HL	Statements	Reasons
	1.	1.
	2.	2. Definition of Midpoint
	3.	3.
-	4.	4. Definition of Midpoint
	5.	5.

4. Given: $\overline{AC} \cong \overline{DB}$, $\angle ABC$ and $\angle DCB$ are right angles

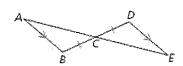
Prove: $\triangle ABC \cong \triangle DCB$


A/S Or HL	Statements	Reasons
	1.	1. Given
Н	2.	2.
L	3.	3.
	4.	4.

5.

Given: $\overline{JK} \cong \overline{ML}$, $\angle JKL \cong \angle MLK$

Prove: $\triangle JKL \cong \triangle MLK$


Proof:

S/A Or HL	Statements	Reasons
S	1.	1.
A	2.	2,
S	3.	3. Reflexive POC
	4.	4.

6. Given: $\overline{AB} \parallel \overline{ED}$, $\overline{BC} \cong \overline{DC}$ Prove: $\triangle ABC \cong \triangle EDC$

Proof:

S/A Or HL	Statements	Reasons
	1.	1. Given
A	2. ∠A = ∠E	2.
A	3.	3.
S	4.	4. Given
	5.	5.